
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 9

This discussion focuses on machine translation and distribution shift.

1 Machine Translation
In this section we will review several techniques in applying deep learning models to machine translation.
As we have discussed in last section, machine translation is a typical text to text NLP problem, where the
input sequence has the around the same amount of information as the output sequence. Typically, modern
machine translation model uses transformer architecture with both encoder and decoder, and the model is
trained with supervised learning. At test time, the translation output is generated using beam search.

1.1 Compensating for Bad Models
One problem of imperfect machine translation models is that they often bias towards very short output
sequences. This is because these models often assign low probabilities to all the tokens in the vocabulary,
therefore a long output sequence would have lower overall probability because of the multiplication of these
low probability tokens. Let’s take a look at a concrete example.

Problem: Model Bias Towards Short Sequences

Imagine our vocabulary contains N tokens, including the <END> token that terminates the decoding
process. Now suppose we have a really bad model that assigns uniform probability to each of the N
tokens at every step regardless of the inputs. Now given the beginning token <BEGIN> of the sentence,
which output sequence has the highest probability under this model?

In order to compensate for the bias towards short sequences, several correction techniques have been pro-
posed, including normalizing the log probability by the sequence length, or adding a bonus for each additional
word in the sequence. These corrections are applied during the beam search to rank the sequences in the
beam.

1.2 Byte Pair Encoding
So far, we treat our sentences as sequences of words, and convert each word into a token. However, this is
often not the best practice in NLP. In order to train our NLP model to be able to handle all tokens accurately
as input and output, each token should be common enough that the embeddings can be estimated robustly
and all the tokens should have been observed during training. Such condition is not true if we use words as
tokens, since there are many rare words and made up words that don’t appear frequently. A naive solution
is to replace them by the unknown word token <UNK>. This approach is problematic because once we replace
all the rare words by a single token <UNK>, the <UNK> token starts to become a common word because it
combines all the probabilities of different rare words. Hence our model will output a lot of <UNK> tokens. A
better approach is to use subword tokenization, where we break down a word into multiple subwords and use
these subwords as tokens. For example, the word ”learning” might be broken down into ”learn” and ”ing”.

There are many different ways to break down a word into subwords. We introduce a popular approach
called byte pair encoding (BPE). BPE was originally proposed as a form of data compression and recently
re-purposed for tokenization in NLP. The BPE process starts with a vocabulary set with all the characters
in the corpus. In each step, we find the most frequent pair of tokens, combine them to create a new token,

CS 182/282A, Spring 2022, Discussion 9 1

and add the new token to the vocabulary set. This step is repeated until the vocabulary set reaches the
desired size. We describe BPE in the followling algorithm.

Algorithm 1 Byte Pair Encoding

Hyperparameters: Desired vocabulary size L.
Initialize vocabulary V set from all characters.
while |V | < L do

Find most frequent pair of tokens x, y ∈ V
Combine x, y into new token w, and add to vocabulary V ← V ∪ {w}

2 Distribution Shift
In this section, we will review the problem of distribution shift. Recall that in order to solve a machine
learning problem, we train our model on the training set, tune our hyperparameters on the validation set and
report the final performance on the test set. These three partitions are randomly partitioned from the same
dataset, and therefore follow the same distribution. This practice follows the paradigm of empirical risk
minimization, where we use the empirical (dataset) distribution to approximate the true data distribution
and minimize our risk on top of it. Suppose that we obtain a model θ from ERM, it can be easily shown
that the expected loss of θ under the true data distribution is tightly bounded by the empirical loss on the
test set. For example, suppose our loss function l(θ, x, y) is bounded between 0 and 1, then by Hoeffding’s
inequality:

P


∣∣∣∣∣∣ 1N

N∑
i=1

l(θ, xi, yi)− E[l(θ,x,y)]

∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−2Nt2

)

Hence, we can deploy our model safely if our test data follow the same distribution as our dataset. However,
real world problems are full of distribution shift, where the test data follow a different distribution, and
directly deploying our model will result in worse performance.

2.1 Robustifying Against Distribution Shift
There are several common strategies of making our model more robust against distribution shift. The most
straightforward one is simply to train a larger model with a larger and more diverse dataset. This will
improve the general performance of our model as well as the robustness. However, in many cases we do
not have access to a larger dataset or the compute resources to train a larger model. Alternatively, we can
apply data augmentation during training to improve the robustness. Here are a few typical methods for data
augmentation:

• Mixup applies element-wise convex combination of two examples to produce a new training example.
For instance, given input x1, x2 and label y1, y2, mixup produces a new training example with input
αx1 + (1− α)x2 and label αy1 + (1− α)y2. Mixup improves robustness against corruption.

• AutoAugment finds complex augmentation strategy by searching the space of combinations of ele-
mentary data augmentation operations.

• AugMix mixes together random augmentations, using many of the same operations from AutoAug-
ment.

• PixMix mixes in a completely different image dataset and results in consistently good performance
across several metrics.

CS 182/282A, Spring 2022, Discussion 9 2

2.2 Anomaly and Out-of-Distribution Detection
While there are many strategies to improve the robustness of our models against distribution shift, sometimes
the distribution shift might be too large for any robust model to perform well. For example, imagine that
our training set is MNIST hand written digits and our test set is ImageNet. In this case there’s no way for
any model to perform well under this kind of distribution shift. Instead, one thing we can do is to detect this
distribution shift, and this approach is known as anomaly detection. A 2D example of anomaly detection
can be seen in Figure 1.

Figure 1: 2D example of anomaly detection.

A very good baseline for anomaly detection is to use the model’s confidence maxk pθ(y = k|x). Specifically,
the confidence measures how sure the model is about its own prediction. The lower the confidence is, the
more likely the model’s prediction is wrong. This simple baseline works reliably across computer vision,
NLP, and speech recognition classification tasks, though it can’t detect adversarial examples.

CS 182/282A, Spring 2022, Discussion 9 3

	Machine Translation
	Compensating for Bad Models
	Byte Pair Encoding

	Distribution Shift
	Robustifying Against Distribution Shift
	Anomaly and Out-of-Distribution Detection

