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This discussion covers unsupervised pretraining methods with transformers, and beam search.

1 Unsupervised Pretraining
We will review several techniques for unsupervised pretraining with transformers, particularly in natural
language processing (NLP). The general idea is to use unlabelled data, which is often easily accessible (for
example text data on the internet, in books, other publications, etc...) in order to learn representations that
can be useful for downstream tasks, such that not as much task-specific data is needed for good performance
on that task.

To illustrate why we might expect this to be helpful, we can imagine we want to translate English sentences
to French, and are given a labelled dataset of English/French sentence pairs. You can imagine this task would
be really difficult if you had no prior knowledge of English, while being much more manageable if you came
in with a general understanding of the English language already, which can be learned using unsupervised
data (for example, all the English text we see on the internet).

1.1 Pretrained Language Models
At a high level, one simple way we can embed words in a context-dependent manner is to take a language
model (for example an LSTM) trained on some task, and to run a sentence through it, taking the hidden
state of the model as the embedding for each word. Since these language models presumably had to use
the context in order to solve the task they were trained on, using the hidden state as an embedding should
provide context-dependent representations of words.

Figure 1: ELMo takes the hidden states in a bi-directional LSTM to generate word embeddings. The LSTMs
are both trained via sequence prediction.

ELMo: We note that if we simply ran an LSTM forward through a sentence to generate the embeddings
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of words, the embedding of each word would only depend on those that came before it, rather than the full
context of the word. ELMo addresses this issue by simply training a bidirectional LSTM (both trained to
predict the next/previous word), and concatenating hidden states of both directions together to form an
embedding.

GPT: GPT (and its successors GPT-2 and GPT-3) are high-capacity transformer-based language models
trained on very large amounts of unlabeled text (e.g. text from the internet). Because they are forward
generative language models, they model architectures consists only of a transformer decoder. While concep-
tually simple, these models can be incredibly powerful for generating text data, with the most recent version
GPT-3 being able to generate text that is almost indistinguishable from text written by a human. The repre-
sentations learned by GPT can also be effectively used for downstream tasks, but they may be a suboptimal
from some tasks because GPT is a forward language model, so its representations only incorporate context
from past context, not the entire sequence of text.

Figure 2: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same
architec- tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are
used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned.
[CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g.
separating ques- tions/answers).

BERT: One can imagine incorporating bidirectional context with a transformer-based language model in
similar manner as ELMo, where we can learn both a forward and backward language model and concatenate
their embeddings. However, while such an embedding would capture bidirectional context, the individual
tasks of forward and backward language modeling are inherently unidirectional, so simply concatenating
their embeddings may not learn representations that capture bidirectional relationships well. Instead, BERT
relies on a single transformer encoder to generate embeddings that incorporate bidirectional context, using
an inherently bidirectional pretraining task.

While the previous transformers we saw for sequence modeling relied on masked self-attention to avoid
peeking into the future, our goal here is to digest the entire context of a word to produce an embedding,
which eliminates the need for the mask. However, this presents a complication if we were to try train
embeddings to predict the next word like ELMo or GPT. The issue here is that if we did unmasked self-
attention, we can already directly see the next word in the input, making prediction completely trivial and
preventing useful representations from being learned.

The solution is to simply change the unsupervised task. Instead of predicting the next word in sentence, we
instead randomly mask out certain words in the input, and then train the embedding to predict the masked
out words. In this way, our model is forced to learn context dependent word-level representations to predict
the missing words.
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In addition to learning word-level representations by predicting masked out words, BERT also tries to learn
sentence-level representations. To train this, BERT takes in pairs of sentences, randomly permutes their
order, and trains a binary classifier to predict which of the two sentences came first originally.

This pretraining procedure gives BERT the ability to produce powerful represenations for downstream tasks
that require language understanding. Such tasks include sentiment analysis, textual entailment, and question
answering. Depending on the downstream task, we can either use the sentence level representation outputted
by BERT or the word-level representations in the downstream task. We can use BERT for downstream tasks
both by simply finetuning the entire model on the downstream tasks, or taking combinations of the hidden
states as fixed representations.

Figure 3: Example of how the BERT-style masked language modeling pretraining task is adapted to T5.

T5: T5 was the result of an extensive empirical analysis on the best practices for pre-training a large
transformer model for transfer learning on downstream tasks. They investigated various design decisions
including model architectures, pre-training objectives, and pre-training datasets. In the end, they concluded
the best performance was offered by the BERT-style masked language modeling pre-training objective, but
changing the architecture to be a standard encoder-decoder transformer, instead of using only a trans-
former encoder like BERT. They do this by proposing to reframe all NLP tasks (including pre-training and
downstream tasks) into a unified text-to-text (sequence-to-sequence) format. For example, for the masked
language modeling task, the input to the encoder is similar to as in BERT, but now the decoder is trained
to autoregressively predict a sequence that contains the predictions for the missing text.

Through this architecture choice, T5 is more flexible and easily adapted for sequence-to-sequence downstream
tasks, such as machine translation. Also, the more general and flexible architecture of T5 allows it to be
more readily used for multi-task learning, where a single model can be fine-tuned on multiple downstream
tasks, which can potentially lead to better performance than training on any single task alone. At the time
of its development, T5 achieved state-of-the-art performance on many popular NLP benchmarks.

Problem: Pretrained Language Models

What are the pros and cons of each of the discussed pretrained language models? In which situations
is each type of model most useful for?
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2 Beam Search
When making predictions with an autoregressive sequence model, it can be intractable to decode the true
most likely sequence of the model, as doing so would require exhaustively searching the tree of all O(MT )
possible sequences, where M is the size of our vocabulary, and T is the max length of a sequence. We could
decode our sequence by greedily decoding the most likely token each timestep, and this can work to some
extent, but there are no guarantees that this sequence is the actual most likely sequence of our model.

Instead, we can use beam search to limit our search to only candidate sequences that are the most likely
so far. In beam search, we keep of the k most likely predictions of our model so far. At each timestep, we
expand our predictions to all of the possible expansions of these sequences after one token, and then we keep
only the top k of the most likely sequences out of these. In the end, we return the most likely sequence out
of our final candidate sequences.

The beam search procedure can be written as the following pseudocode:

Algorithm 1 Beam Search

for each time step t do
for each hypothesis y1:t−1,i that we are tracking do

find the top k tokens yt,i,1,...,yt,i,k
end for
sort the resulting k2 length t sequences by their total log-probability
keep the top k
advance each hypothesis to time t+ 1

end for

Problem: Beam Search

We are running the beam search to decode a sequence of length 3. Consider the following probability
predictions of the decoder, where each node in the tree represents the next token log probability
prediction of one step of the decoder conditioned on previous tokens. The vocabulary consists of two
word: ”neural”, and ”network”. What sequence/sequences could beam search with k = 2 output?
Decoder log probability prediction of next token given previous tokens:

CS 182/282A, Spring 2022, Discussion 8 4


	Unsupervised Pretraining
	Pretrained Language Models

	Beam Search

