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This discussion covers recurrent neural networks and LSTMs. Your TA will also walk through some
midterm preparation for the midterm.

1 Recurrent Neural Network
The world is full of sequential information, from video to language modelling to time series data. In particular,
we would like to model these sequences using neural networks, and solve some major types of tasks that we
would like to solve with sequence models.

1.1 Types of Problems
• One-to-one problems take a single input x and produce a single output y. Problems like classification
(takes an image as input, and produces a class label as output) and semantic segmentation (image as
input, segmentation mask as output) fall under this category.

• One-to-many problems take a single input, and produce a sequence of output. Problems like image
captioning (takes a single image as input, and produces a caption (a sequence of words) as output) fall
under this category.

• Many-to-many problems take sequences of inputs and produce sequences of outputs. Problems like
language translation (sequence of words in one language to sequence of words in another) fall under
this category

Figure 1: Types of problems we would like to solve using sequential models

1.2 Why the Recurrence?
As you read through this discussion worksheet, you don’t process each word entirely on its own, but instead
use your understanding from the previous words as well. Traditional neural networks do not have the
capability to use its reasoning about previous events to infer later ones. For example, if we would like to
classify what is happening at every frame in a movie, this can be framed as an image classification task
where the network is provided the current image. However, it is unclear how a traditional neural network
should incorporate knowledge from the previous frames in the film to inform later ones.

CS 182/282A, Spring 2022, Discussion 6 1



Recurrent neural networks (RNNs) address this issue, by using the idea of “recurrent connections.” RNNs are
networks with loops in them that allow information from previous inputs to persist as the network processes
the future inputs. These recurrent connections allow information to propagate from ”the past” (earlier in
the sequence) to the future (later in the sequence).

Figure 2: An example of a generic recurrent neural network. This shows how to ”unroll” a network through
time - instead of thinking about sequence modeling as a single network with shared weights

In Figure 2, we illustrate the RNN computation as it is unrolled through time. Each i ∈ {0, . . . , t} represents
a new timestep in the network. By feeding in a state computed from earlier timesteps as an input together
with the current input, information can persist throughout the time as the network “remembers” the past
inputs it processed.

1.3 Vanilla RNN
In the following section, we will use the following notation. Denote the input sequence as xt ∈ Rk for
t ∈ {1, . . . , T}, and output of the network be yt ∈ Rm for t ∈ {1, . . . , T}. In the following example,
we construct a”vanilla” many-to-many RNN, consisting of a node that updates the hidden state ht and
produces an output yt at each timestep with the following equations:

ht = tanh(Wh,hht−1 +Wx,hxt +Bh)

yt = Wh,yht +By

where ht is the time step of a hidden state (one can think of ht−1 as the previous hidden state), W·,· be the
set of weights (for example, Wx,h represents weight matrix that accepts an input vector and produce a new
hidden state), yt be the output at timestep t and Bh and By be the bias terms. We can also represent it as
the diagram below,
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Figure 3: A simple RNN cell. As we can see by the arrows, we only pass a single hidden state from time
t− 1 to time t

In this vanilla RNN, we update to a hidden state ”ht” based on the previous hidden state ht−1 and input
at the current time xt, and produce an output which that is a simple affine function of the hidden state. To
compute the forward (and backward) passes of the network, we have to ”unroll” the network, as shown in
Figure 2. This ”unrolling” process creates something that resembles a very deep feed forward network (with
depth corresponding to the length of the input sequence), with shared affine parameters at each layer. Our
gradient is computed by summing the losses from each time-step of the output.

Problem: Gradients in Vanilla RNN

Why are vanishing or exploding gradients an issue for RNNs?

Problem: Coding RNNs Up!

Complete the class definition, started for you below,

import numpy as np

class VanillaRNN:
def __init__(self):

self.hidden_state = np.zeros((3, 3))
self.W_hh = np.random.randn(3, 3)
self.W_xh = np.random.randn(3, 3)
self.W_hy = np.random.randn(3, 3)
self.Bh = np.random.randn(3)
self.By = np.random.randn(3)
self.hidden_state = np.zeros(3)

def forward(self, x):
# Processes the input at a single timestep and updates the hidden state
self.hidden_state = np.tanh(...)
self.output = np.dot(...) + ...
return self.output
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2 Long Short Term Memory (LSTM)
To address the problem of vanishing and exploding gradients, we can use a different kind of recurrent cell -
the LSTM cell (standing for ”long short term memory”). The layout of the cell is shown in Figure 4. The
LSTM has two states which are passed between timesteps: a ”cell memory” C and the hidden state h. The
LSTM update is given as follows:

ft = σ(xtU
f + ht−1W

f )

it = σ(xtU
i + ht−1W

i)

ot = σ(xtU
o + ht−1W

o)

C̃t = tanh(xtU
g + ht−1W

g)

Ct = ft ◦ Ct−1 + it ◦ C̃t

ht = tanh(Ct) ◦ ot

where ◦ represents the Hadamard Product (elementwise multiplication).

The update function is rather complex, but it makes a lot of sense when looking at it in the context of the
cell state C as a ”memory”. First, we compute the value ft, which we call the ”forget” gate, as it controls
how we retain information through time. Because of the sigmoid activation function, ft is bounded between
0 and 1, and the first thing we do is multiply the previous memory by ft. Intuitively, if f1 is close to 1, we
“remember” the previous state, and if ft is close to 0, we forget it. Next, we compute it, which we consider
as the ”input/update” gate, which controls how much we update the cell memory at the current timestep.
The update gate gets added to the memory cell, so it takes information from the current input xt and adds
it to the memory. Finally, the output gate ot controls the output of the network, the value that gets passed
on to the next cell.

We can compare the LSTM to a vanilla RNN. Since a vanilla RNN had to use the hidden state ht both to
produce outputs as well as store memories, ht gets updated with an affine map and a tanh activation at
every timestep, which can easily lead to vanishing or exploding gradients. In contrast, the LSTM can use the
cell state Ct as its “long-term memory,” and backpropagation through the long term memory is much easier
since the cell states change fairly slowly in a simple way (simply being a moving average of the compute
C̃t’s.). On the other hand, the hidden state in the LSTM can serve as a “short-term memory” and change
quickly through time.

Figure 4: An overview of the LSTM cell
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Problem: Backpropagation Through LSTM

Denote the final cost function as J . Compute the gradient ∂J
∂W g using a combination of the following

gradients,
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Problem: Vanishing Gradient in LSTMs

Using the previously derived gradient, which part of ∂J
∂W g allows LSTMs to mitigate the vanishing

gradient problem?
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