
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 4

This discussion will cover CNNs, batch normalization, weight initialization, dropout, and ReLUs.

1 Convolutional Neural Networks
Convolutional neural networks1 (CNN) are a type of neural network architecture that have become the key
ingredient for state of the art modern computer vision performance.

They perform operations similar to feed-forward neural networks that we have discussed, but explicitly
account for spatial structure in the data, and so are very common for computer vision tasks where inputs
are images. That said, CNNs can also be applied to non-image data with similar structure in the input, such
as time series or text data (in which case they’re taking advantage of temporal structure).

1.1 Convolution (Cross-Correlation) Operator
At the heart of CNNs is the convolution operator. In this discussion, what we refer to as a convolution is
actually the cross-correlation operator here instead, which is the exact same but with the indexing of the
weights in w inverted. For example, “convolutional” layers in the deep learning library Pytorch are also
actually cross-correlations instead, and homework 1 will also similarly have you implement cross-correlation
instead of the actual convolution.

To motivate the use of convolutions, we will work through an example of a 1-D convolution calculation to
illustrate how convolutions work over a single spatial dimension. Suppose we have an input x ∈ Rn, and
filter w ∈ Rk. We can compute the convolution of x ⋆w as follows:

1. Take your convolutional filter w and align it with the beginning of x. Take the dot product of w and
the x[0 : k−1] (using Python-style zero-indexing here) and assign that as the first entry of the output.

2. Suppose we have stride s. Shift the filter down by s indices, and now take the dot product of w and
x[s : k − 1 + s] and assign to the next entry of your output.

3. Repeat until we run out of entries in x.

Below, we illustrate a 1D convolution with stride 1.

Input vector x∈Rn︷ ︸︸ ︷

x1

...
xk

...
xn


⋆

Convolutional filter w∈Rk︷ ︸︸ ︷
w1

...
wk

 =

Output vector y∈Rn−k+1︷ ︸︸ ︷
∑k

i=1 wixi∑k
i=1 wixi+1

...∑k
i=1 wixi+n−k


We see that the output vector is smaller than the input vector (Rn−k−1 compared to Rn). A common way
to address this is zero-padding, in which we append zeros on both ends of the input vector before applying
the convolution (note that there are other conventions for zero-padding as well).

1Recommended reading: http://cs231n.github.io/convolutional-networks/

CS 182/282A, Spring 2022, Discussion 4 1

http://cs231n.github.io/convolutional-networks/


Often, we’ll be dealing with multiple spatial dimensions (2 spatial dimensions in the case of images). In this
case, we would need to slide our filter along all spatial dimensions to construct the output.

Problem 1: Test your know knowledge of convolution dimensions

In this problem, we will run a series of convolution-related operations to better understand how
dimensions are affected by convolutions.

1. Suppose you have a 32× 32× 3 image (a 32× 32 image with 3 input channels). What are the
resulting dimensions when you convolve with a 5× 5× 3 filter with stride 1 and 0 padding?

2. What if we zero-pad the input by 2?

3. Suppose we now stack 10 of these 5×5×3 filters and continue to zero pad the input by 2. What
is the new shape of the output, and how many parameters are in our filters (not including any
bias parameters)?

4. What would be the spatial dimensions after applying a 1 × 1 convolution? Think about what
this does.

1.2 Convolutions as Matrix Multiplication
We note that convolutions are a linear operation. Recalling linear algebra, any linear map (between finite-
dimensional spaces) can be expressed as a matrix, so we will see in this section how to write a convolution
as a matrix multiplication.

Problem 2: Expressing convolutions as matrix multiplication

We shall again consider a 1D convolution. Consider an input x ∈ R4 and filter w ∈ R3. Letting x̄
denote the result of zero-padding the input by 1 on each end, what is the matrix W such that

R4×6︷︸︸︷
W

Zero padded input x̄∈R6︷ ︸︸ ︷
0
x1

x2

x3

x4

0

 = x̄ ∗w?

We can observe now that the resulting matrix will be very sparse (most entries are 0) if the filter size is
much smaller than the input size, corresponding to the fact that such convolutions exploit spatial locality.
We also observe that there is a lot of parameter reuse, as the convolutional filter weights are repeated many
times throughout the explicit matrix.

This has several implications. First of all, this implies that convolutional layers are less expressive than
fully-connected layers (as fully connected layers are represented by arbitrary matrices).

Another important implication stems from the fact that we have very optimized tools for computing matrix
multiplications. While a naive implementation of a convolution will require looping over all the spatial
dimensions, it will turn out that reformulating the convolution as a matrix multiplication will often be much
faster due to these optimizations (for example, the Cythonized im2col function in part 4 of homework 1
essentially does this).

1.3 Backwards Pass for a Convolution
We’ll consider the same 1D convolution as before, but without zero-padding for simplicity.

CS 182/282A, Spring 2022, Discussion 4 2



Problem 3: Backwards pass for convolutions

Let y = x ∗w ∈ R2, where w ∈ R3, x ∈ R4. Let ∇yL denote the gradient of the loss with respect
to the output of the convolution. Compute the gradients of L with respect to x and w. Can you
express the gradients as convolutions themselves?

CS 182/282A, Spring 2022, Discussion 4 3



2 Batch Normalization
The main idea behind Batch Normalization is to transform every sampled batch of data so that they have
µ = 0, σ2 = 1. Using Batch Normalization typically makes networks significantly more robust to poor
initialization. It based on the intuition that it is better to have unit Gaussian inputs to layers at initial-
ization. However, the reason for why batch normalization works is not entirely understood, and there are
conflicting views between whether Batch Normalization reduces covariate shift, improves smoothness over
the optimization landscape, or other reasons.

In practice, when using batch normalization, we add a BatchNorm layer immediately after ecah FC or
convolutional layer, either before or after the non-linearity. The key observation is that normalization is a
relatively simple differentiable operation, so we do not add too much additional complexity in the network.

Noticeably, Batch Normalization proceeds by first computing the empirical mean and variance of some
mini-batch B of size m from the training set.

µB =
1

m

m∑
i=1

ai

σ2
B =

1

m

m∑
i=1

(ai − µB)
2

Then, for a layer of network, each dimension, a(i) is normalized appropriately,

ā
(k)
i =

a
(k)
i − µ

(k)
B√(

σ
(k)
B

)2

+ ϵ

where ϵ is added for numerical stability.

In practice, after normalizing the input, we squash the result through a linear function with learnable scale
γ and bias β, so, we have,

ā
(k)
i =

a
(k)
i − µ

(k)
B√(

σ
(k)
B

)2

+ ϵ

γ + β

Intuitively, γ and β allows us to restore the original activation if we would like, and during training, they
can learn other distribution that would be better initialization than standard Gaussian.

Problem 4: Examining the BatchNorm Layer

1. Draw out the computational graph of the BatchNorm layer

2. Given some derivatives ∂f
∂yi

, the derivative of the output of the BatchNorm layer, compute the
derivatives with respect to parameters γ, β

Problem 5: (Challenge) Examining the BatchNorm Layer

From the previous question, given some derivatives ∂f
∂yi

, the derivative of the output of the BatchNorm
layer, compute the derivatives with respect to input xi.
Please note the derivation can be tedious, but it is still a very good exercise!

CS 182/282A, Spring 2022, Discussion 4 4



3 Dropout
Definition 1 (Dropout). Dropout is a popular technique for regularizing neural networks by randomly re-
moving nodes with probability 1− pkeep in the forward pass. However, the model is unchanged at test time.

Intuition Dropout can be thought of as representing an ensemble of neural networks, since each forward
pass is effectively a different neural network, since random nodes are removed.

Activation Scaling A caveat about dropout is that we must divide the activation by p, since we do not
change the model at test time, but we notice that none of our dimensions will then be forced to 0. Below is
sample code to demonstrate how Dropout works in practice for a 3-layer network.

import numpy as np
from scipy.special import softmax

def dropout_train(X, p):
"""
Forward pass for a 3-layer network.
NOTE: For simplicity, we do not include backwards pass or parameter update

X: Input
p: Probability of keeping a unit active (e.g., higher p leads to less dropout)
"""
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p
H1 *= U1 # Drop the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p
H2 *= U2 # Drop the activations
out = np.dot(W3, H2) + b3
return out

def predict(X):
""" Forward pass at test time """
H1 = np.maximum(0, np.dot(W1, X) + b1)
H2 = np.maximum(0, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3
return out

Problem 6: Dropout Review

Explain why Dropout could improve performance and when we should use it

CS 182/282A, Spring 2022, Discussion 4 5



4 Weight Initialization
One of the reasons for poor model performance can be attributed to poor weight initialization. In class, we
discussed ways to ensure activations are initialized reasonably and do not grow or shrink much in later layers
(for example, Gaussian random weights or Xavier initialization). In practice, using batch normalization or
layer normalization makes weight initialization not as critical to get perfect, and these techniques combined
with Xavier initialization are often enough.

Problem 7: Deriving Xavier Initialization

Assume we are training a fully-connected neural network with identity activation functions (i.e. there
are no non-linearities after each linear layer, so the entire network is a linear function), We furthermore
assume that weights and inputs are i.i.d. and centered at zero, and biases are initialized as zero.
We would like the magnitude of the variance to remain constant with each layer. Derive the Xavier
Initialization, which initializes each weight as,

Wij = N
(
0,

1

Da

)
where Da is the dimensionality of a

CS 182/282A, Spring 2022, Discussion 4 6



5 Aside: ReLU Activations and its Relatives
Definition 2 (ReLU Activation). ReLU (Rectified Linear Unit) Activation is defined as, ReLU(x) =
max(0, x), and is a popular activation function.

For x < 0, ReLU is equal to the zero function. This can have its down-side for training: the gradient is zero
for x < 0, meaning we make no update when x < 0. Other variants of ReLU replace the zero function with
a different function for x < 0. For example:

• Leaky ReLU. Leaky ReLU replaces the x < 0 piece of ReLU with a linear function with a small
slope.

Leaky ReLU(x) =

{
αx x < 0

x x = 0
,

where α is chosen to be small.

• ELU. The ELU (Exponential Linear Unit) replaces the x < 0 piece of RELU with an exponential
function.

ELU(x) =

{
α(ex − 1) x < 0

x x = 0
,

where α is a chosen hyperparameter.

Please note we did not cover the above explicitly in lecture, but they are good knowledge to have.

Problem 8: (Review) Forward and Backward Pass for ReLU

Compute the output of forward pass of a ReLU layer with input x as given below:

y = ReLU(x)

x =


1.5 2.2 1.3 6.7
4.3 −0.3 −0.2 4.9
−4.5 1.4 5.5 1.8
0.1 −0.5 −0.1 2.2


With the gradients with respect to the outputs dL

dy given below, compute the gradient of the loss with
respect to the input x using the backward pass for a ReLU layer:

dL

dy
=


4.5 1.2 2.3 1.3
−1.3 −6.3 4.1 −2.9
−0.5 1.2 3.5 1.2
−6.1 0.5 −4.1 −3.2


Problem 9: ReLU Potpourri

1. What advantages does using ReLU activations have over sigmoid activations?

2. ReLU layers have non-negative outputs. What is a negative consequence of this problem? What
layer types were developed to address this issue?

CS 182/282A, Spring 2022, Discussion 4 7


	Convolutional Neural Networks
	Convolution (Cross-Correlation) Operator
	Convolutions as Matrix Multiplication
	Backwards Pass for a Convolution

	Batch Normalization
	Dropout
	Weight Initialization
	Aside: ReLU Activations and its Relatives

