
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 3

This discussion will cover some background on autodiff and practice applying backpropagation.

1 Automatic Differentiation
In this section we will cover some background on different types of differentiation and motivate
why we use backward autodiff (instead of forward).

In training neural networks, we are trying to find the model weights θ that minimize a loss function L(θ).
To do this, recall that we typically use (stochastic) gradient descent as follows

θt+1 = θt − α∇L(θt).

which means it is important to be able to efficiently compute derivatives, especially for large and complex
models. Automatic differentiation (autodiff) is a method for computing the derivative of a program-specified
function.

Problem 1: Methods for Differentiation

There are three main methods for differentiation: symbolic differentiation, numerical differentiation,
and automatic differentiation. How does each of them work, and what are their pros/cons?

Solution 1: Methods for Differentiation

• Symbolic Differentiation: convert the computer program to a single mathematical expression
so we can compute exact gradients. While accurate and ‘human-readable’, this can be difficult
or impossible to implement for complex programs.

• Numerical Differentiation: compute gradients using finite differences, where we approximate
∂f
∂x ≈

f(x+∆x)−f(x)
∆x for sufficiently small ∆x. While easy to implement, the discretization process

and approximation can introduce compounding errors.

• Automatic Differentiation: convert the program into a series of primitive operations that we
know how to differentiate. Here we get exact derivatives for compositions of defined primitive
operations, avoid repetitive calculations of the same values, and the complexity of a derivative-
pass through the program is the same as the original program.

Our neural networks are composed of a series of nested functions. Consider the feedforward network below

Input Output

x f1 f2 f3 f4 o
x2 x3 x4

CS 182/282A, Spring 2022, Discussion 3 1



Here, we have an input x ∈ Rn, an output o ∈ Rm, and let the Jacobian of f : Rn → Rm be an m ×
n dimensional matrix. Note that in the previous discussion, we parametrized the Jacobian with entries(

∂f
∂x

)
ij
=

∂fj
∂xi

, also known as the denominator layout. In this section, we use the numerator layout instead,

which is
(

∂f
∂x

)
ij
= ∂fi

∂xj
.

Explicitly writing out the nested functions, we have

o = f(x)

= f4(f3(f2(f1(x))))

Let the dimensionality of the intermediate variables be x2 ∈ Rm1 ,x3 ∈ Rm2 ,x4 ∈ Rm3 . Then by the chain
rule, we can write

∂o

∂x
=

∂o

∂x4

∂x4

∂x3

∂x3

∂x2

∂x2

∂x

=
∂f4(x4)

∂x4

∂f3(x3)

∂x3

∂f2(x2)

∂x2

∂f1(x)

∂x

= Jf4(x4)︸ ︷︷ ︸
m×m3

Jf3(x3)︸ ︷︷ ︸
m3×m2

Jf2(x2)︸ ︷︷ ︸
m2×m1

Jf1(x)︸ ︷︷ ︸
m1×n

= Jf (x)

Recall that ∂fi
∂xj

is the ith row and jth column of Jf (x). To build the Jacobian, we can use the Jacobian-

vector product (JVP) or vector-Jacobian product (VJP) to build up the full Jacobian up column-wise
or row-wise, respectively.

Forward Differentiation. The JVP is the right-multiplication of the Jacobian with a vector v ∈ Rn. To
find ∂f

∂xj
, we take the JVP with ej ∈ Rn, where ei is a column vector that is 1 at index i and all zeros

otherwise.

∂f

∂x1
= Jf (x)e1,

∂f

∂x2
= Jf (x)e2, · · · ,

∂f

∂xn
= Jf (x)en

Thus computing a gradient of o with respect to x requires n JVPs with e1, · · · , en. In total, this requires
O(n(mm3 +m3m2 +m2m1 +m1n)).

Backward Differentiation. The VJP is the left-multiplication of a vector u ∈ Rm, and the Jacobian. To
find ∇fi(x), we take the VJP with ej ∈ Rm.

∇f1(x) = e⊤1 Jf (x),∇f2(x) = e⊤2 Jf (x), · · · ,∇fm(x) = e⊤mJf (x)

Thus computing a gradient of o with respect to x requires m VJPs with e1, · · · , em. In total, this requires
O(m(mm3 +m3m2 +m2m1 +m1n)). In practice, what this may look like is

Algorithm 1 Backward Autodiff

Require: x ∈ Rn

x1 ← x, ui ← ei ∈ Rm, i ∈ {1, ...,m}
for k = 1...K do

xk+1 ← fk(xk) ▷ Forward pass to get the outputs at each layer (which we store)
end for
for k = K...1 do

u⊤
i ← u⊤

i Jfk(xk), i ∈ {1, ...,m} ▷ Backward pass to build the Jacobian
end for

return o = xK+1, Jf (x)i = u⊤
i

CS 182/282A, Spring 2022, Discussion 3 2



Problem 2: Motivation for Backwards Autodiff

Looking at the computational costs above, why do we use backward autodiff in machine learning?

Solution 2: Motivation for Backwards Autodiff

Note that backward differentiation with VJPs is more efficient when m ≤ n. In machine learning,
typically we want to minimize the loss function, which is a scalar. This corresponds to the m = 1
setting where backward differentiation is more efficient. However, note that in backward differentia-
tion we need to keep track of all the intermediate computations, as the VJP is a multiplication from
left to right (i.e. multiply by Jfn(xn) first, then Jfn−1(xn−1), etc.).

CS 182/282A, Spring 2022, Discussion 3 3



2 Mechanical Backpropagation
In this section, we will work through some calculations used during backpropagation.

Recall the softmax function p : Rk → Rk, with entries given by

pi(z) =
ezi∑k
j=1 e

zj
.

Each entry pi corresponds to the probability assigned to the label i. We derived in Discussion 1 that the
partial derivatives of pi(z) for each entry of z is given by,

∂pi(z)

∂zj
=

{
pi(z)(1− pj(z)) if i = j

−pi(z)pj(z) if i ̸= j

= pi(z)(δij − pj(z)).

We can then concisely write the full gradient with respect to z as

∇pi(z) = pi(z)(ei − p(z)),

where ei is the unit vector with 1 at index i and 0 elsewhere.

In this example, we will maximize the log-likelihood of the given labels in our dataset, which motivates the
following loss for a multiclass logistic regression model.

L(x, y,W,b) = − log py(Wx+ b).

Problem 3: Gradient with respect to linear layer parameters

Utilize the chain rule to compute the gradient of L(x, y,W,b) with respect to W and b.

Solution 3: Gradient with respect to linear layer parameters

Let z = Wx+ b. Given we already know ∇pi(z), we first compute ∇ log pi(z) as

∇ log pi(z) =
∇pi(z)

pi(z)

= ei − p(z).

We note that since our loss is the negative log likelihood, we will need to flip the sign of our gradient.
We first consider the gradient of the loss with respect to the bias b. Notice that,

∂zi
∂bj

= δij ,

and so the Jacobian ∂z
∂b is simply the identity matrix. Utilizing the chain rule to compute the gradient

with respect to the bias, we have

∇bL = − ∂z

∂b
∇z log py(z)

= −I∇z log py(z)

= −∇z log py(z)

= p(z)− ey.

Now, we consider the partial derivatives of z with respect to W .

∂zk
∂Wij

= δikxj .

CS 182/282A, Spring 2022, Discussion 3 4



Noting that the derivative with respect to Wij depends only on the i’th entry of z, we compute

∂L

∂Wij
=

∂L

∂zi
xj

∂L

∂W
= −∇z log py(z)x

T

= (p(z)− ey)x
T .

Suppose now that we had a multilayer neural network and W,b were the the parameters of the last layer of
the network. To compute gradients of the earlier parameters of the network with backpropagation, we also
need to compute the gradient of the loss with respect to x and pass it backwards.

Problem 4: Gradient with respect to input

Utilize the chain rule to compute the gradient of L(x, y,W,b) with respect to x.

Solution 4: Gradient with respect to input

We can again compute

∂L

∂xj
=

k∑
i=1

∂L

∂zi

∂zi
∂xj

=

k∑
i=1

∂L

∂zi
Wij .

Vectorizing, we obtain

∂L

∂x
= −WT∇z log py(z)

Having computed these, one then simply needs to also compute the backwards pass through the chosen
activation function to able backpropagate through fully-connected feedforward networks!

We’ll now move on to a slightly more complicated example of backpropagation involving a skip connection,
which you’ll see again when we cover ResNets.

Problem 5: Gradient in a nonlinear computation graph

Suppose we have y = W2σ(W1x)+x, where σ is the ReLU activation. Letting δy denote the gradient
of the loss with respect to y, compute the gradient of the loss with respect to x.

Solution 5: Gradient in a nonlinear computation graph

Note here that x now contributes to y both through the W2σ(W1x) (the usual feedforward pass) and
the x term (the skip connection).
We’ll first go through the contribution to the gradient from the feedforward pass. Let z = W1x and
a = σ(W1x). From our earlier calculations, we see that

∂L

∂a
= WT

2 δy.

We now need to backpropagate through the ReLU activation. Let R(z) denote the diagonal matrix
such that R(z)ii = 1 if zi > 0 and 0 otherwise. We see that the backward pass through the ReLU

CS 182/282A, Spring 2022, Discussion 3 5



activation simply multiplies the post-activation gradient by R(z), and so we have

∂L

∂z
= R(z)

∂L

∂a

= R(z)WT
2 δy.

Finally, we can compute the feedforward pass’s contribution to ∂L
∂x as

WT
1

∂L

∂z
= WT

1 R(W1x)W
T
2 δy.

To handle the two different paths through to the output, we simply need to sum each gradient
contribution, so our final gradient is

∂L

∂x
= WT

1 R(W1x)W
T
2 δy + δy.

CS 182/282A, Spring 2022, Discussion 3 6


	Automatic Differentiation
	Mechanical Backpropagation

