CS 182 / 282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang DiSCU.SSiOIl 2

This discussion will first talk about the bias-variance tradeoff and go through an example to illustrate
how regularization can affect the bias and variance. We will then go over a review of notation in
vector/matrix calculus that we will need to understand backpropagation, and then finally review
several optimization algorithms covered in lecture.

1 Bias-Variance Tradeoff

1.1 Intuitive Understanding of Bias-Variance Tradeoff

First, recall the definitions of bias and variance from last discussion,

Definition 1 (Bias and Variance of an Estimator). The bias of an estimator is a measure of how much
does the expected value of the estimator differ from the true target. Suppose we have a randomly sampled
training set D, and we select an estimator denoted 6 = é(D) Then, for a particular test input xz, the bias
of our estimator’s prediction on x is given as Bias(fo(x)) = Eypiyjz),plfo(x) —y]. The variance of an
estimate is a measure of how much the estimate differs from the expected value of the estimate, and is given

by Var(fy(x)) = Ep[(fo(z) — Ep[fo(x)])?].

In supervised learning, our goal is to learn a function that does well in terms of the true risk. However, we
generally do not know the true distribution and only have access to a dataset of samples from the distribution,
and instead learn by minimizing the empirical risk (often with an additional regularization term) instead.

Even though we cannot directly optimize the risk, we can still attempt to better understand sources of
error in our estimation. In particular, when our loss is the squared error, we can derive the bias-variance
decomposition of the MSE. Specifically, we will find that the MSE estimator is exactly to the variance of the
estimator plus the square of its bias (and an irreducible error).

Intuitively, the bias and variance can be summarized by the following graphic:

Low Variance High Variance

Low Bias

High Bias

Figure 1: A visual explanation of the bias and variance. Figure from [1].

CS 182/282A, Spring 2022, Discussion 2 1

Here, notice that when there is a high variance, the estimates are more spread out, but when there is a high
bias, we see a general deviation away from our target. The best estimates are those with low variance and
low bias since they mostly hit the target.

1.2 Bias-Variance Tradeog Mechanics

Suppose we have a randomly sampled training set D (drawn independently from our test data), and
we select an estimator denoted 6 = 6(D) (for example, via empirical risk minimization).

Show that we can decompose our expected mean squared error for a particular test input z into a
bias, a variance and an irreducible error term as below:

]EYNp(ylz),D[(Y - fé('D) (x))Q] = Var(fé('p) (z)) + Bias(fé(p)(x))2 +0°

You may find it helpful to recall the formulaic definitions of Variance and Bias, reproduced for you
below:

Var(f50)(@) = Ep [(fp (@) — Elfa) (@)])?]
Bias(fé(D)(:c)) = EYNp(Y‘:E),D[fé(D) (z) = Y]

Solution 1: Deriving Bias-Variance Tradeoff
For simplicity of notation, let E[-] denote Ey . y2),p[']
E{(Y — fyp)(@))2] = E[Y — f3(p(@))?
= E[fé(p)(m)Q - 2Yfé(p)(m) +Y?]
By independence of Y and D and linearity of expectation,
EI(Y — f3)(@)?] = Elfyp) (@)2] — 2E[YElfy) (2)] + E[Y?]
Noting the definition of variance,
E[(Y - fé(D) (2))?] = Var(fé(D)(x)) + E[fé('p)(x)F - QE[Y]E[JC@(D) ()] +E[Y?]
— Var(f3py (@) + (Elfy) (@)] — E[Y])? + Var(¥]X = o)
= Var(fjp)(z)) + Bias(fé,(p)(x))2 + Var(Y|X = x)

The conditional variance Var(Y|z), which we will denote o2 captures the irreducible error that will
be incurred no matter what learner 6 we use.

We have now decomposed our test risk into a bias, variance and irreducible error term. As there is nothing
we can do about the irreducible error, this tells us that we need to choose the learning algorithm and/or
hyperparameters é() in order to simultaneously achieve low bias and low variance. The next two questions
will show how the choice of estimator 6 can influence bias and variance. In particular, we will see that /o
regularization in linear regression can provide a tradeoff between bias and variance.

CS 182/282A, Spring 2022, Discussion 2 2

Problem 2: Deriving Bias and Variance of Linear Regression Models

Our dataset consists of D = {(x;,y;)}",. We let the label vector Y = X6 + & where 6 is the true
linear predictor and each noise variable €; is i.i.d. with mean 0 and variance 1. We use the ordinary
least squares model. Calculate the bias and covariance of the 6 estimate and use that to compute the

bias and variance of the prediction at particular test inputs z. Recall that the OLS solution is given
by

6=(X"X)"'X"y,

where X € R™*? is our (nonrandom) data matrix, Y € R? is the (random) vector of training targets.
For simplicity, assume that X " X is diagonal (we could have applied an orthogonal transformation
to make this the case), or for an even simpler problem that doesn’t require linear algebra, assume
X € R™¥!, making X " X simply a scalar value.

Solution 2: Deriving Bias and Variance of Linear Regression Models

We first compute the bias of 6. Recalling that we have Y = X6 + e for a noise vector &, we then have

E[f] = E[(XTX)"'X (X0 +¢)]
=Ef+(XTX)'X ¢l
=0+ (X" X) ' X TE[¢]

=40 € has 0 mean.

We thus see that the OLS estimator 6 is an unbiased estimator of the true parameter . Considering
the bias of our estimate at a particular test input z, we see that our prediction is also unbiased.

EzT0—2T60—¢=0

Next, we compute the variance of é, and we will proceed by first computing the covariance of é7

E[(0—0)0—0)T]=E[(X " X) ' XTee" (X" X)X]
= (X"TX) X TElee"|X(XTX)™)T
= (X" X)"XTL(xTx)"'x")T noise variables are iid
_ (XTX)—IXTX((XTX)—1>T
_ (XTX)—l

Now for a particular test input z, we can compute the variance

Var[z| (0 — 0)] = Elz" (0 — 0)(6 — 6)a]
=z (XTX) .

Unlike the bias, we see that the variance of our estimate depends on which test input we’re measuring
the risk for. For simplicity, suppose X " X were a diagonal matrix (we could have applied an orthogonal
transformation to achieve this) with sorted entries 0} > ¢3... > 02 (corresponding to the data
variances in each dimension). Now we can easily compute the variance as Z?zl 22 /0?, and we see
that in directions where o is close to 0 (which means there is very little variance in the data in this

dimension), the variance of our estimate can explode (and thus our risk as well).

CS 182/282A, Spring 2022, Discussion 2 3

Problem 3: Deriving Bias and Variance of Linear Regression Models (Challenge)

What happens to the bias and variance if we instead use an /5 regularized estimator

0=(X"X+N)'XTY?

Solution 3: Deriving Bias and Variance of Linear Regression Models (Challenge)

Recall that the regularized estimator is given by 6= (XTX +M)71XTY. We see that the new bias
is,
E[f — 0] =E[(X X +X)"'XT (X6 +¢) — 0]
=(XTX+A)'XTX0 0.

which is now nonzero. Letting § = (X T X + AI)~'X T X6 be the mean of 6, the covariance of 0 is,

E[(6—0)@—0)T]=E[(XTX+A) I XTY - XTXO)(XTY - X X0)T(XTX + A1)
=E[(XTX+ X)X Te)(e X)(XTX +A)™HT]
— (XTX +AD)TXTX(XTX + A7)

Now if we again assume X ' X is diagonal with entries o2, then the final covariance is diagonal with
entries,

2
g;

(02 +)%

Recalling that in the unregularized case, the variance would increase unboundedly as o; — 0, adding
{5 regularization with parameter A bounds the variance and prevents it from exploding for small o;.
We will see that when we add ¢ regularization, we can reduce the high variance in directions
where o; is close to 0 and sensitive, at the cost of introducing some bias.

CS 182/282A, Spring 2022, Discussion 2 4

2 Vector and Matrix Calculus Review

In this section, we review vector and matrix calculus, and formalize the notation we will use. These notations
will be required to understand backpropagation in the next lectures. Henceforth, we will denote scalars with
lowercase letters (e.g., x), vectors with bolded lowercase letters (e.g., x) and matrices with upper case letters
(e.g., X). We will use similar conventions for functions depending on the shape of its output (e.g., g(*)
denotes a function with a vector valued output).

Gradients with respect to vectors We first define the gradient of a scalar function with respect to a
vector input. Suppose we have a function f : R* — R, which maps a d-dimensional vector to a scalar. Then
we define the gradient of f at a particular input x to be a column vector (the same shape as the input)
consisting of partial derivatives at x:

fo(X) =

We note that this choice of notation (laying out gradients to be the same shape as input) is not universally
used; you will often find sources using the opposite convention (especially in mathematics) with gradients
as row vectors (and Jacobians will be the transpose of what we describe next). However, we will use
this convention for deep learning because it is intuitive (for example, in gradient descent, we often write
0 < 6 — aVL(0), which only makes sense when § and VL(6) are the same shape) and because it is easily
extended to gradients for matrices and higher dimensional arrays.

Problem 4: Gradient of squared ¢ norm

Suppose we have a vector x € R, and let f(x) = ||x||§ = x ' x. Compute the gradient V f(x).

Solution 4: Gradient of squared /> norm

We can explicitly write out f(x) as the sum Z?zl x?. Taking partial derivatives with respect to each
entry, we see that %(x) = 2x;. Expressing this in vector notation, we get

Vix) =2x.

Jacobians We now consider the case where f : R™ — R™ has vector valued inputs and outputs. Let

fi : R™ — R be the function that outputs the ith component of f. Then, we can view our Jacobian (which
we shall denote as %) as stacking together the gradients of f; for ¢ € {1,...,m}. That is, the Jacobian %

will be an n X m matrix with entries given by

of\ _ 9/
ox/).. Ox;

]

Problem 5: Jacobian of a linear map

Suppose we have a vector x € R? and a matrix A € R?*". Let f(x) = ATx € R". Compute the
Jacobian of f with respect to x.

CS 182/282A, Spring 2022, Discussion 2 5

Solution 5: Jacobian of a linear map

We can explicitly write the jth entry f(x) as the sum Zle A;;jx;. Taking partial derivatives of the
ith entry of f(x) with respect to the jth entry of the input z;, we see that g—g(x) = A;;. Expressing
this in matrix notation, we get

9f(x)

ox =4

Multivariate Chain Rule We first recall the basic chain rule when everything is scalar valued. Suppose
we have an input x, compute y = g(x), then compute z = f(y). Then the chain rule says

0: _0:0y
or Oy oz

Now let’s consider the case where y is vector valued in R™ (x and z remain scalars). Summing over the

contributions of each entry of y, we see % is now a scalar given by

" Jy; Oz
Ox Oy;

i=1

Finally, let’s consider the case when x is also a vector in R™. From our calculation with scalar x and vector
y, we know the jth entry of % is given by the partial derivative

0z " 9z Oy,

871']‘ N i—1 8yl 8xj'

Stacking together the entries 59721_ into a vector, we see that the gradient of the output z with respect to x is

given by the product of the Jacobian matrix of y with respect to x and the gradient of z with respect to y:
Rm, Rm,Xn R’V‘L
AN AN
0z dy 0z

ox ox oy

Problem 6: Combining the two previous calculations with the chain rule

Suppose we have a vector x € R? and a matrix A € R¥*". Let g(x) = ATx € R", and let f(y) = HYH§
Compute the gradient of f(g(x)) with respect to x.

Solution 6: Combining the two previous calculations with the chain rule

Let y = g(x) and z = f(y). From problem 3, we recall that the gradient of z with respect to y is
given by 2y. From problem 4, recall that the Jacobian % is simply the matrix A. Applying the chain
rule, we get

CS 182/282A, Spring 2022, Discussion 2 6

Gradients with respect to matrices and higher dimensional arrays Now suppose we have a function
f:R4*d2 4 R which maps a d; by dy matrix to a scalar. We will again define the gradient at a particular
input matrix X to be a matrix of the same shape as X, consisting of the partial derivatives with respect to
each entry of the matrix.

of of

0X11 t 0X1,dy
VXf(X) = : . :
of of

0Xay 1 T 0Xag 4y

Similarly, we can generalize this convention of having the gradient match the shape of the input when our
input were higher dimensional arrays (e.g. in the weights of a convolutional layer).

We can define a version of a Jacobian for vector-valued functions with matrix inputs that preserves the
matrix dimensions (similarly for higher dimensional arrays as well). Suppose f: R%-% — R™ then we can
define the Jacobian to be a rank-3 tensor (an array with 3 indices) in R%*92X" with each entry given by

() o
0X ijk 8Xij'

We will now go through the chain rule calculation again, this time with a matrix input. Suppose X € R4z,
y=g(X) € R" and z = f(y) € R. Again, we have that the partial derivative with respect to each entry of
the matrix X;; is given by

0z " 0z Oy
8Xij - 1 8y1 BX”

Similarly to the vector input case, we can again succinctly write out the full gradient with respect to the
matrix X as

Rd1 X d2 Ré1Xxd2xn Rn

= P
o= _ oy o
X ~ 0X Oy’

Note that the product of the rank-3 tensor (or 3-dimensional array) and vector can be a seen as a general-
ization of a matrix vector multiplication. Multiplying a matrix X € R™*" by a vector y € R™ results in a
vector in R™ where each entry is the inner product of a row of X with y. The product of a rank-3 tensor
A € R xd2xn with a vector b € R then forms a d; x do matrix, where each entry is the inner product of a
"row” of A and b.

We also note that this calculation of the gradient with respect to a matrix X is equivalent to first flattening
X to a vector, computing the gradient with respect to the flattened X using the previous multivariate chain
rule for vectors, and then reshaping the gradients back to match the original matrix shape of X.

Problem 7: Revisiting with a matrix derivative instead

In problem 5, we computed the gradient of z = ”ATXHE with respect to x. We will now repeat this
exercise, but instead compute the gradient with respect to A.

Suppose we have a vector x € R? and a matrix A € R¥", Let g(4) = ATx € R”, and let
fly) = ||y||§ Compute the gradient of f(g(A)) with respect to A.

CS 182/282A, Spring 2022, Discussion 2 7

Solution 7: Revisiting with a matrix derivative instead

Let y = g(A) and z = f(y). From problem 3, we recall that the gradient of z with respect to y is
given by 2y.

We will now compute the Jacobian of y with respect to A. Recall that yx = 2;1:1 Az, so the
entries of the Jacobian are given by

3.2
0A ijk Aij
B {0 otherwise.

Applying the chain rule and writing each entry as a summation, we have

% _$(Z) &
6AU_’;(8A ijkayk

L
zayj

= x; - 2y;

We can then express is as an outer product and expand to get

Finally, as a matter of notation, note that the way we order derivatives in our chain rule (with the final
output on the rightmost side) is again a result of our chosen convention for gradients and Jacobians. You
may notice in other texts that the chain rule is written in the reversed order using a different convention for
Jacobians.

CS 182/282A, Spring 2022, Discussion 2 8

3 Optimization methods

To perform empirical risk minimization, we need to choose an algorithm to compute the optimal parameters
for the empirical risk. In deep learning, we almost always use methods based off stochastic gradient descent
due its scalability (both in terms of dataset size and model size), and we’ll go through and review several
optimization methods as introduced in lecture.

3.1 Gradient Descent

For all our algorithms, we assume we can compute the gradients of our loss function for each data point
VoL(x;,y;,0). The negative gradient of a function gives the steepest descent direction; that is, the direction
we should move in order to decrease the loss most quickly if we moved an infinitesimally small amount.

Given this, the most natural method for minimizing our training loss is to iteratively compute the gradient
for the entire dataset D, and update our parameter some small amount in that direction. This leads to the
(batch) gradient descent algorithm which computes iterates as

«
0t+1 = Ot - 5 Z VGL(mivyi70t)a

| | z;,y; €D

where « is a fixed scalar known as the step size. However, this naive algorithm requires us to take the average
gradient over the entire training dataset for each iteration, which can be too slow for larger datasets.

3.2 Stochastic Gradient Descent (SGD)

In order to speed up gradient descent, we can instead sample a random subset of the dataset for each
iteration, leading to the (minibatch) stochastic gradient descent algorithm. The gradient estimate at
each iteration is now noisy (with the amount of noise depending on the minibatch size), but is an unbiased
estimator for the true gradient and can still provide useful directions to update our parameters. Compared
to batch gradient descent, we are trading off variance in the gradients for much faster gradient computation
that does not need to scale with the dataset size. While extra noise can mean it requires more iterations to
converge, the faster individual iterate time can more than offset the cost.

The SGD algorithm proceeds exactly as the gradient descent algorithm, only replacing the full training set
D with a new random minibatch B! for each iteration
@

0 =6~ g O Vollwiy:.0) B'CD.
@i,y €B?
All algorithms below are all compatible with stochastic gradients, so for notational convenience, we will now
denote the (possibly stochastic) gradient estimate at iterate ¢ to simply be VL(#*). The new SGD/GD
update in this notation would simply be

't = 0" —aV L.

3.3 When does graciient descent work pooriy?

We'll first understand when gradient descent fails for a very simple convex problem, which will motivate
different extensions. We consider a simple quadratic loss function f(x1,z2) = a12? + asz3 and we’ll look at
the behavior of GD for different settings of the loss parameters ag, as.

Gradient descent can work well when f is “nice” in some sense (which we’ll refer to as being well-conditioned),
which will be the case if a1 and ay are similar in magnitude. We see this in Figure 2a, where the direction
of gradient always aligns closely with the direction of the optimum, and GD can work with a fairly large
learning rate to make quick steady progress to the optimum.

In Figures 2b and 2c, we consider an “ill-conditioned” problem where as > a;. In Figure 2b, with the same
learning rate as before, the gradients tend to have a much larger vertical component than horizontal, and

CS 182/282A, Spring 2022, Discussion 2 9

the iterates now oscillate greatly along the vertical axis and diverge. If we use a much smaller learning rate
in Figure 2c, we are able to stabilize the parameter updates in the vertical axis, but we end up making much
slower progress to the optimum along the horizontal axis.

Thus, when our iterates are forced to always move in the direction of the gradient, we can have situations
where either the iterates are very unstable, or our learning rate is so small that we make very slow progress.
To address this pathology, we shall now examine different methods which do not update the parameters
exactly in the direction of the gradient, but instead modifies the direction based on past gradients seen.

(a) With a large learning rate, GD (b) With a large learning rate, GD (c¢) With a small learning rate, GD

on this well-conditioned problem on this ill-conditioned problem os- on this ill-conditioned problem re-
makes fast steady progress towards cillates and diverges in the vertical =~ mains stable, but makes very slow
the optimum. direction. progress towards the optimum.

Figure 2: Different behaviors of gradient descent on different problems and with different learning rates.

3.4 SGD with momentum

Figure 3: Effect of using momentum on the ill-conditioned quadratic problem. SGD with momentum quickly
realizes that all the gradients consistently point towards the right, so it “gains momentum” and moves faster
along that direction over time. On the other hand, the alternating vertical gradients tend to cancel out over
the past iterations, damping the amount of vertical oscillation. This way, the iterates make quick progress
toward the optimum along the horizontal direction, while not diverging along the vertical axis.

One way to help alleviate this problem is to accumulate gradient information across previous iterates in
order to damp the oscillations and focus on the directions where we have consistently been moving in. In
the example in the left of Figure 2b, we notice that each gradient consistently moves the iterate towards the
right (towards the optimum), while alternating iterations have gradients point in different directions along

CS 182/282A, Spring 2022, Discussion 2 10

the vertical axis. If we average the past gradients using momentum (Figure 3), we see that the vertical
components of the gradient will tend to cancel out and stabilize, allowing the horizontal movement towards
the right to dominate and lead us to the optimum more quickly. In the stochastic gradient setting, momentum
can also reduce the impact of noise, again by smoothing out the oscillations int he gradient direction incurred
by the random data sampling.

Concretely, the momentum method (the particular variant we use is also called the heavy-ball method) keeps
a moving average of our gradients, weighting more recent gradients more heavily, and updates our iterate in
the direction of the weighted average. The iterates proceed as

vi=mvi™! + VL)

ot = 0t — av?.

Here v? is our accumulated gradient vector, m controls how much we remember the past gradients, and « is
our step size as before.

3.5 RMSProp and Adagrad

~20.0 -175 -15.0 -1255 -10.0 -15 -5.0 -25 00

Figure 4: Effect of using adaptive learning rates on the ill-conditioned quadratic problem. In this case, we
use RMSProp, which is able to rescale the different parameter updates to make fast progress to the optimum
instead of oscillating as regular gradient descent did.

Adaptive learning rate methods, which include RMSprop and Adagrad, are an alternative approach towards
selecting a better direction based on rescaling the different components of the gradient to form a new
direction. One issue we notice with the ill-conditioned loss in the previous figures is that the loss is much more
sensitive along the vertical axis than the horizontal one, and that the extreme sensitivity along the vertical
axis was what forced us to use a small learning rate for gradient descent. Intuitively, if we could decouple
learning rates for each coordinate and rescale our updates to place more importance on the horizontal
direction, we would move much faster towards the optimum.

Concretely, both RMSProp and Adagrad do this individual rescaling by estimating a vector s’ that tracks
the “size” of the past gradients in each dimension. They both update the kth coordinate of the parameters
according to

[e%

sk +e

where € is a small constant for numeric stability (to avoid dividing by zero).

92+1 = 92 - ngL(Qt),

CS 182/282A, Spring 2022, Discussion 2 11

RMSProp and Adagrad differ in how they update st:

st =Bsi 1+ (1 - B)(Ve, L(0")? RMSProp
st = st + B(Ve, L(6))? Adagrad
RMSProp keeps a running average of per dimension gradient magnitudes, while Adagrad keeps a sum.

Thus, for Adagrad, the vector s’ monotonically increases over time, causing the effective learning for each
coordinate to decrease monotonically.

3.6 Adam and other algorithms

Adam is a popular optimizer in deep learning that essentially combines the adaptive learning rates of RM-
SProp with momentum.

For additional information about these optimization methods (as well as numerous others), here’s a blog post
with a list of popular optimization methods for deep-learning: http://ruder.io/optimizing-gradient-descent/

CS 182/282A, Spring 2022, Discussion 2 12

http://ruder.io/optimizing-gradient-descent/

References

[1] Fortmann-Roe. Bias and variance. http://scott.fortmann-roe.com/docs/BiasVariance.html.

CS 182/282A, Spring 2022, Discussion 2

13

	Bias-Variance Tradeoff
	Intuitive Understanding of Bias-Variance Tradeoff
	Bias-Variance Tradeoff Mechanics

	Vector and Matrix Calculus Review
	Optimization methods
	Gradient Descent
	Stochastic Gradient Descent (SGD)
	When does gradient descent work poorly?
	SGD with momentum
	RMSProp and Adagrad
	Adam and other algorithms

