
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 12

This discussion focuses on self-supervised learning and massive models.

1 Self-Supervised Learning
Deep learning has seen considerable success when we have large labeled datasets to learn from, e.g. ImageNet.
However, it is usually not practical to collect large labeled datasets for each task and domain that we want
to apply deep learning to. To some extent, we can leverage models trained on such datasets for transfer
learning on different tasks, and hope that the representations learned can generalize. However, this approach
is still limited because the learned representations may overfit to the original dataset and not generalize well
beyond it, and we still need to collect labeled data for each domain and modality we are interested in.

While labeled data can be hard to come by, there often exists large amounts of unlabeled data that is widely
available, e.g. text on the internet. Although we cannot apply supervised learning directly to this data, we
can still hope to potentially learn something about the structure of the data, and thus learn representations
that capture understanding of the data domain and can be reused for different tasks in the domain.

How can we learn from unlabeled data? One popular class of methods involve predicting one part of the
input data from another part. For example, the masked language modeling objective used in BERT is an
example of this, since we are predicting masked-out words from other words in their context.

Figure 1: The masked language modeling objective we saw previously with BERT is an example of self-
supervised learning.

Another example of this are variational autoencoders (VAEs), which we previously saw in the context of
generative modeling. VAEs can also be seen as self-supervised representation learning, since we are asking
our decoder to predict the original input from the latent distribution produced by the encoder, which cannot
contain all the original information in the input. The output of the encoder can then be used as learned
representations for a downstream task.

CS 182/282A, Spring 2022, Discussion 12 1



Figure 2: Example of a convolutional VAE with images. It is common to use µz as the representation for a
downstream task.

Another popular class of methods involve data augmentation, usually in the context of image data. In these
methods, we provided augmented versions of data to our models, and ask them to make predictions that are
in some way consistent with another augmented version of the same data. Through this, we implicitly provide
the model with domain knowledge to learn from, specifically the key idea that two augmented versions of
the same data should represent the same thing. For example, two different random crops of a dog image
should still represent a dog.

Usually, after we have learned representations using self-supervised learning, we can either use them as frozen
feature extractors for supervised learning on a downstream task, or we can fine-tune the entire network end-
to-end on our downstream task. In either case, we usually require a significantly smaller amount of labeled
data than if we had trained from scratch.

We will now cover a few modern examples of data augmentation based self-supervised learning.

1.1 SimCLR
SimCLR is a simple framework for contrastive representation learning with images. The idea behind con-
trastive representation learning is that we want representations for similar inputs to also be similar. However,
if we train a model to only maximize the similarity between representations for similar inputs, then the model
can recover a degenerate solution such as always outputting a vector of all zeros, which trivially maximizes
this objective. With contrastive learning, we additionally train our model to maximize the dissimilarity
between representations for pairs of arbitrary inputs, so that we do not recover such a degenerate solution.
Usually, a pair of similar inputs is referred to as a positive pair, and an arbitrary pair of inputs is referred
to as a negative pair.

The loss function used in SimCLR for a positive pair of examples (i, j), which has also been used in other
contrastive learning methods, is defined as:

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=i exp(sim(zi, zk)/τ)

zi and zj are (transformed) representations for our pair of inputs, sim(zi, zj) refers to the cosine similarity
between zi and zj , τ is a temperature hyperparameter, and N is the amount of pairs in our training batch.
In SimCLR, each positive pair consists of two different randomly augmented versions of the same image. We
use the other augmented images in our training batch to construct negative pairs with our input i, which
can be seen in the denominator of the loss function. By minimizing this loss function, we maximize the
similarity between positive pairs, and minimize the similarity between negative pairs.

CS 182/282A, Spring 2022, Discussion 12 2



Figure 3: Diagram of SimCLR. x is the original image, t and t′ are randomly sampled augmentations from
our augmentation distribution T , and x̃i and x̃j are the respective transformed images. Notably, we apply
our contrastive loss not directly to our representations h, but to their transformations z. The representation
network f and the additional transformation network g are both learned jointly on the contrastive loss.

1.2 Bootstrap Your Own Latent (BYOL)
BYOL is another data augmentation based self-supervised learning method, but it does not use contrastive
learning. Instead, we take our pair of augmented images and feed them individually into two different
networks, the main online network we are training, and a target network. We take the (transformed)
representation from our online network, feed it through an additional prediction network, and minimize the
mean squared error between this and the (transformed) representation from the target network. Notably, we
do not train the target network here. The target network has an identical architecture to the online network
(except for the prediction head), but its weights are an exponential moving average of the online network’s
weights. This means that after each training step, we update its weights to be closer to the online network,
but not fully.

Figure 4: Diagram of BYOL. sg refers to stop gradient, meaning we do not update the target network to
minimize the loss.

Problem 1: Self-supervised Learning

How does SimCLR avoid degenerate solutions? Is this issue something to be potentially concerned
about with BYOL?

CS 182/282A, Spring 2022, Discussion 12 3



Solution 1: Self-supervised Learning

SimCLR avoids degenerate solutions through a contrastive loss that encourages arbitrary image pairs
to have dissimilar representations. BYOL in principle could suffer from degenerate solutions, since
outputting only zeros for everything would minimize its loss. However, in practice BYOL does not
suffer from this, and its authors hypothesize that the additional predictor network as well as the
exponential moving average of parameters in the target network help prevent this from happening.

CS 182/282A, Spring 2022, Discussion 12 4



2 Massive Models
With the recent rise of self-supervised learning, there has been another emerging trend that has emerged
alongside it: massive models. With self-supervised learning, we now have the ability to leverage much larger
and diverse datasets than before, meaning we can also now train much larger models that can take advantage
of all this data. Most of these models have been developed in the domain of natural language processing
(NLP), and the all of the very large ones (>100 billion parameters) developed so far are transformer decoder-
only language models. The transformer architecture is widely used for large-scale models partly because the
parallelizability of the attention mechanism allows for more efficient utilization of compute.

Recent examples of massive NLP models include GPT-3, Gopher, MT-NLG, and PaLM. While these models
vary in terms of datasets, architectures, and hyperparameters, they are all trained on the standard language
modeling objective, using large amounts of data obtained from the internet and other sources. While their
training objective is simple, the scale and diversity of their training data enables them to do a wide range
of impressive things. The general trend we’ve seen so far in these models is that performance continues to
improve as we scale up both dataset size and model capacity.

2.1 In-context Learning
Large pre-trained models have been leveraged for downstream tasks by using them for representations, either
by only training a small model on top of these representations, or fine-tuning the entire model. This approach
can be impractical for massive models, due to the compute needed to run and potentially fine-tune them on
moderately sized datasets. However, these massive models have shown to perform downstream tasks with
only a few examples of the task, and without any fine-tuning or gradient updates. This is done through
in-context learning, where we simply provide the task examples to the model in the prompt, and we ask
the model to predict a next sequence of tokens in order to complete the task. For example, if we want to
do machine translation from English to French, we can prompt our language model with some examples of
translations, and then provide our model with the English sentence we want translated in the same format
as the examples, and have our model do translation simply by predicting the next tokens that should follow.

Figure 5: Example of few-shot in-context learning for machine translation.

In-context learning can be successful despite the fact that the model’s parameters are never updated on text
sequences that closely resemble those seen in the prompt. Through large-scale training, these models are
able to generalize to these new scenarios and apply their understanding of language to them. However, this
is only a recently observed phenomenon, and it is still unclear exactly how in-context learning works, what
is important for it (e.g. how to best construct prompts for different tasks), and how we can best leverage it.
Also, when fine-tuning is possible, it usually still results in better performance.

CS 182/282A, Spring 2022, Discussion 12 5


	Self-Supervised Learning
	SimCLR
	Bootstrap Your Own Latent (BYOL)

	Massive Models
	In-context Learning


