
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 11

This discussion focuses on generative adversarial networks and adversarial attacks.

1 Generative Adversarial Networks
In the previous discussion, we focused on training generative models by directly maximizing the likelihood
of the inputs we observe in our training data. This week, we’ll consider an alternative method for training
generative models for high dimensional inputs that does not explicitly compute likelihoods, but will train
the generative model to fool a learned a learned discriminator network, which is being trained to distinguish
between real and generated inputs.

1.1 The GAN Game
For GANs, we will typically generate samples by first sampling vectors from some fixed noise distribution
Z ∼ p(Z), and then passing them through a (deterministic) generator function Gθ (parameterized by θ) to
obtain samples X̃ = Gθ(Z) ∼ pG(X̃).

Our discriminator will be a binary classifier Dϕ (parameterized by ϕ), which will be trained to discriminate

between the generated samples X̃ and the true data distribution X ∼ p(X).

We can write view the training of GANs as solving a two-player game given by

min
Gθ

max
Dϕ

= EX∼p(X)[logDϕ(X)] + EX̃∼pG(X̃)[log
(
1−Dϕ(X̃)

)
]

= EX∼p(X)[logDϕ(X)] + EZ∼p(Z)[log
(
1−Dϕ(Gθ(Z))

)
].

If we hold the generator Gθ fixed, then training the discriminator Dϕ would be exactly the same as training
a normal binary classifer. If we hold the discriminator Dϕ fixed, then training the generator is simply
optimizing the generator to generate samples that the discriminator thinks are valid inputs.

Note that this objective does not require us to compute the likelihoods pθ(x̃) for any generated image (or
any other image) under the generator’s distribution, which gives us more flexibility unlike latent variable
models which required tractably computable log-likelihoods to train.

In practice, we optimize GANs by alternating taking gradient steps on the discriminator and generator,
rather than fully optimizing the discriminator before updating the generator as this minimax game suggests.

1.2 GANS with the “perfect” discriminator
To gain intuition for what training a GAN should do, we consider an idealized setting where our discriminator
is infinitely expressive and is fully optimized to convergence for every generator update.

In this case, for any input x and fixed generator G, the optimal discriminator D∗ assigns probability

D∗(x) =
p(x)

p(x) + pG(x)
.

Problem 1: Optimal Discriminator

Show that the optimal discriminator probability D∗(x) is given by the expression above.

CS 182/282A, Spring 2022, Discussion 11 1



We can substitute this optimal discriminator into our two player game and reduce to a single optimization
over the generator Gθ as

min
Gθ

EX∼p(X)

[
log

(
p(X)

p(X) + pG(X)

)]
+ EX̃∼pG(X̃)

log( pG(X̃)

p(X̃) + pG(X̃)

) .

Defining q(x) = p(x)+pG(x)
2 , then we can rewrite the objective as

min
Gθ

EX∼p(X)

[
log p(X)− log q(X)

]︸ ︷︷ ︸
DKL(p(x)∥q(x))

+EX̃∼pG(X̃)

[
log pG(X̃)− log q(X̃)

]
︸ ︷︷ ︸

DKL(pG(x)∥q(x))

+constant.

We recognize this objective as being (up to the additive constant that doens’t matter for optimization)
to precisely be the Jensen-Shannon divergence between the true data distribution p(X) and the generator
distribution pG(X̃). This shows that in the ideal setting with a perfect discriminator, training a GAN
does in fact optimize the generator distribution to be close to the data distribution (as measured by the
Jensen-Shannon divergence).

1.3 Training GANs in Practice
Of course, we will generally not find the optimal discriminator (due to computational limitations and repre-
sentational limitations on the discriminator architecture), so we will generally not precisely be minimizing
the Jensen-Shannon divergence when training GANs. It also turns out that having a perfect discriminator
and directly trying minimize the Jensen-Shannon can be very undesirable for training GANs. In Figure 1,
we see that the ideal discriminator values (red) are essentially constant on all the generated data, so the
gradient for the generator would be extremely small, which can make optimizing the generator extremely
slow.

Figure 1: Perfect discriminator values (red line) with real (blue) and generated (orange) inputs in a 1D
example. The generator will have very little gradient signal on how to improve, making this discriminator
undesirable.

The key idea to improve GAN training is that we don’t actually care how well the discriminator does by
itself, but rather we only care that it provides a useful signal to improve the generator. A common way
we can accomplish this is to restrict the expressivity of discriminator, often by enforcing some additional
smoothness condition. As we see in Figure 2, the smoother discriminator values in green can provide a more
useful learning signal for the generator.

Wasserstein GANs (which motivate imposing a Lipschitz constraint on the discriminator as minimizing
the Wasserstein distance between the generator and real data distributions), gradient penalty GANs, and

CS 182/282A, Spring 2022, Discussion 11 2



Figure 2: A discriminator constrained to be Lipschitz continuous (green line) with real (blue) and generated
(orange) inputs in a 1D example. The generator can now follow the slope of the green line to move generated
samples towards the real data.

spectral normalized GANs all enforce different notions of smoothness on the discriminator in order to make
learning the generator easier.

Other tricks to avoid vanishing gradients include using real-valued discriminators like in Least-squares GAN
(which turns out to be equivalent to minimizing the Pearson χ2 divergence under ideal settings), and instance
noise, which adds noise to the inputs to smooth out the densities of both the real and generated data
distributions, improving the learning signal.

1.3.1 Techniques for Lipschitz Continuity

We define the Wasserstein distance W (p, pG) as

W (p, pG) = sup
∥f∥L≤1

EX∼p(X)[f(x)]− EX̃∼pG(X̃)[f(x)],

where f is restricted to be a 1-Lipschitz function. The original WGAN paper suggested approximating
f (analagous to the discriminator) with a neural network parameterized by ϕ and enforcing a Lipschitz
constraint by clipping the each entry of the weights ϕ to have magnitude less than ϵ. While this weight
clipping will ensure that the discriminator fϕ is K-Lipschitz for some K, but the exact constant K would
depend on the architecture and can be a bit complicated to compute.

Another more elegant way to enforce Lipschitz continuity via gradient penalties. Here, we add an ad-
ditional term λ(

∥∥∇xf(x)
∥∥
2
− 1)2 to our loss for the discriminator, directly encouraging the norm of the

gradients to have norm close to 1. While this doesn’t strictly enforce 1-Lipschitzness due to it only being a
soft penalty on the gradient norm, it is effective and commonly used.

Finally, spectral normalization can be used to strictly enforce a 1-Lipschitz constraint on the discriminator
fϕ. We first note that if two functions f, g are L1 and L2 Lipschitz respectively, then their composition f ◦ g
is L1L2-Lipschitz, and we can extend this to any finite composition of Lipschitz functions.

Problem 2: Composition of Lipschitz Functions

If f, g are L1, L2 Lipschitz functions, then prove their composition f ◦ g is L1L2-Lipschitz.

We then note typical neural nets can be written as compositions of functions fn ◦ σ ◦ . . . , σ, f1, where σ rep-
resents the nonlinear activation functions and fi are some affine layer parameterized by (Wi, bi). Therefore,
one way to ensure fϕ is 1-Lipschitz is by ensuring each fi and σ are all 1-Lipschitz.

We can easily verify that the ReLU activation is 1-Lipschitz (as it is either constant with slope zero or
linear with slope 1), so all that remains is to enforce that each linear layer fi is 1-Lipschitz. Clearly, the
Lipschitzness of fi does not depend on the bias parameter bi, so we only need to consider the Lipschitzness of

CS 182/282A, Spring 2022, Discussion 11 3



the function g(x) = Wix. The Lipschitz constant K of the linear function g can be written as the supremum

sup
∥x∥2=1

∥Wix∥2,

which we recognize to be the spectral norm σ(Wi) (the largest singular value of Wi). Thus, a simple
way to enforce 1-Lipschitzness for each linear layer (and thus the whole network) is to simply renormalize
Wi ← Wi

σ(Wi)
after each gradient update, as the spectral norm σ(Wi) is fairly straightforward and cheap to

compute.

CS 182/282A, Spring 2022, Discussion 11 4



2 Latent Variable Models
Formally, a latent variable model p is a probability distribution over observed variables x and latent variables
z (variables that are not directly observed but inferred), pθ(x, z). Because we know z is unobserved, using
learning methods learned in class (like supervised learning methods) are unsuitable.

Indeed, our learning problem of maximizing the log-likelihood of the data turns from,

θ ← argmax
θ

1

N

N∑
i=1

log pθ(xi)

to the following,

θ ← argmax
θ

1

N

N∑
i=1

log

∫
pθ(xi|z)p(z)dz

where we recognize p(x) =
∫
p(x|z)p(z)dz. Unfortunately, the integral is intractable, but we will discuss

ways to find a tractable lower bound.

2.1 Varational Autoencoders (VAE)
The VAE uses the autoencoder framework to generate new images. For the following description of encoder
and decoder of the VAE, let us assume our input x is a 28×28 photo of a handwritten digit in black-and-white,
and we wish to encode this information into a latent representation of space z.

Encoder Encoder maps a high-dimensional input x (like the pixels of an image) and then (most often)
outputs the parameters of a Gaussian distribution that specify the hidden variable z. In other words, they
output µz|x and Σz|x. We implement this as a deep neural network, parameterized by ϕ, which computes
the probability qϕ(z|x). We can sample from this distribution to get noisy values of the representation z.

Decoder Decoder maps the latent representation back to a high dimensional reconstruction, denoted as
x̂, and outputs the parameters to the probability distribution of the data. We implement this as another
neural network, parametrized by θ, which computes the probability pθ(x|z). Following the digit example,
if we represent each pixel as a 0 (black) or 1 (white), probability distribution of a single pixel can be then
represented using a Bernoulli distribution. Indeed, the decoder gets as input the latent representation of a
digit z and outputs 784 Bernoulli parameters, one for each of the 784 pixels in the image.

Training VAEs To train VAEs, we find parameters that maximize the likelihood of the data,

θ ← argmax
θ

1

N

N∑
i=1

log

∫
pθ(xi|z)p(z)dz

This integral is intractable. However, we can show that it is possible to optimize a tractable lower bound on
the data likelihood, called the Evidence Lower Bound (ELBO),

Li = Ez∼qϕ(z|xi)[log pθ(xi|z)]−DKL(qϕ(z|xi)||p(z))

Problem 2: Blurry Images

Why do VAEs typically produce blurry images?

CS 182/282A, Spring 2022, Discussion 11 5



2.2 Variational Inference
In this subsection, we will derive the variational approximation in discrete form, and discuss the re-parametrization
trick.

Problem 3: Latent Variable Model

Write out the log-likelihood objective of a discrete latent variable model.

Problem 4: Variational Approximation

Show that
N∑
i=1

log pθ(xi) ≥
N∑
i=1

Eq(z|xi)[log pZ(z)− log q(z|xi) + log pθ(xi|z)]

Hint : Use Jensen’s Inequality, which states, logE[X] ≥ E[logX]

Problem 5: Variational Approximation Optimization

To optimize the Variational Lower Bound derived in the previous problem, which distribution do we
sample z from?

Combining it with Entropy Recall the entropy function,

H(p) = −E[log p(x)] = −
∫
X

p(x) log p(x)dx

and also recall KL-Divergence,

DKL(q||p) = E
[
log

q(x)

p(x)

]
= −E[log p(x)]−H(q)

We can show that, our derived approximation can be reformulated as the Evidence Lower Bound (ELBO),

Li = Ez∼qϕ(z|xi)[log pθ(xi|z)]−DKL(qϕ(z|xi)||p(z))

Re-Parametrization Trick The re-parametrization trick allows us to break qϕ(z|x) into a deterministic
and stochastic portion, and re-parametrize from qϕ(z|x) to gϕ(x, ϵ). In fact, we can let, z = gϕ(x, ϵ) =
g0(x) + ϵ · g1(x) where ϵ ∼ p(ϵ). This reparametrization trick is simple to implement, and has low variance 1

Problem 6: Reparametrization Example

Let us get an intuition for how we might use re-parametrization in practice. Assume we have a normal
distribution q, parametrized by θ, such that, qθ(x) ∼ N (θ, 1), and we would like to solve,

min
θ

Eq[x
2]

Use the re-parametrization trick on x to derive the gradient.

1See Appendix of this paper for more information

CS 182/282A, Spring 2022, Discussion 11 6

https://arxiv.org/pdf/1401.4082.pdf

	Generative Adversarial Networks
	The GAN Game
	GANS with the ``perfect'' discriminator
	Training GANs in Practice
	Techniques for Lipschitz Continuity


	Latent Variable Models
	Varational Autoencoders (VAE)
	Variational Inference


