
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 10

This discussion focuses on confidence calibration, distribution shifts and adversarial robustness.

1 Robustness
1.1 Confidence Calibration
In real-world decision making systems, classification networks must not only be accurate, but also should
indicate when they are likely to be incorrect. The probability associated with the predicted class label should
reflect its ground truth correctness likelihood.

Figure 1: Model prediction confidence.

Perfect calibration

P(Ŷ = Y | P̂ = p) = p ∀p ∈ [0, 1]

Model calibration

E[|P(Ŷ = Y | P̂ = p)− p|]

Expected Calibration Error (ECE) Computes weighted average of mis-calibration

1. Train neural network on training data

2. Create predictions and confidence estimates using the test data

3. Group the predictions into M bins, define bin BM to be the set of all predictions (ŷi, p̂i) for which it
holds that p̂i ∈

(
m−1
M , m

M

]

CS 182/282A, Spring 2022, Discussion 10 1

4. Compute the accuracy and confidence of bin BM as

acc (Bm) =
1

|Bm|
∑
i∈Bm

1 (ŷi = yi) conf (Bm) =
1

|Bm|
∑
i∈Bm

p̂i

5. Compute the expected calibration error as

ECE =

M∑
m=1

|Bm|
n

∣∣acc (Bm)− conf (Bm)
∣∣

Maximum Calibration Error Computes maximum mis-calibration. Useful for high risk applications

MCE = max
m∈{1,...,M}

∣∣acc (Bm)− conf (Bm)
∣∣

Figure 2: Reliability Diagram. Illustration of ECE and MCE errors.

Calibrating model by adjusting softmax temperature Models can be made more calibrated after
training by adding a softmax temperature.

p̂(y = i | x) =
exp

(
li/T

)∑k
j=1 exp

(
lj/T

)
Through experiments, [1] found that training using negative log-likelihood / cross-entropy loss increases
confidence in correct classes, leading to overfitting in negative log-likelihood.

A simple solution to improve model calibration is minimizing negative log-likelihood by adjusting softmax
temperature T after training model.

Problem: Model Calibration

Optimizing softmax temperature T to minimize negative log-likelihood can improve model calibration,
does it hurt classification accuracy?

CS 182/282A, Spring 2022, Discussion 10 2

1.2 Distribution shift framework
1.2.1 Domain adaptation

Assuming have abundant training data from a source domain and only a small amount of training data from
the target domain which is the actual domain of interest.

Importance weighting A classic approach to domain adaptation is to estimate importance weights for
the source training data.

Etarget [ℓ(θ;X,Y)] = Esource

[
ptarget (X,Y)

psource (X,Y)
ℓ(θ;X,Y)

]
≈ 1

N

N∑
i=1

ptarget (xi, yi)

psource (xi, yi)
ℓ (θ;xi, yi)

Estimating psource and ptarget from data are difficult in deep learning.

Invariant feature learning Invariance means that we wish for the feature distributions between the
source and target data to look identical, if the model is outputting similar features for both source and
target data and predicting well for source data, we may expect that it will also predict well on target data.

1.2.2 Subpopulation shift

In subpopulation shift, we assume several training domains rather than just two. The key challenge in
subpopulation shift is that some domains are underrepresented in the training data.

1.2.3 Domain generalization

Similar to subpopulation shift, domain generalization assumes several domains are provided at training time.
Different from it, we assume that we will be given new domains at test time, and our goal is to generalize to
these new domains.

Figure 3: Summary of problem settings and frameworks for characterizing real-world distribution shifts.

2 Adversarial robustness
2.1 A simple adversarial attack
A simple threat model is to assume the adversary has an ℓp attack distortion ϵ i.e., for some assumed and ϵ,

∥xadv − x∥p ≤ ϵ

CS 182/282A, Spring 2022, Discussion 10 3

The adversary’s goal is usually to find a distortion δ that maximizes the loss subject to its budget

xadv = x+ arg max
δ:∥δ∥p≤ϵ

ℓ(θ;x+ δ, y)

2.2 Generate adversarial examples
Fast gradient sign method (FGSM)

xFGSM = x+ ϵ sign
(
∇xℓ(θ;x, y)

)
This attack performs a single step of gradient ascent on the input to increase the model’s loss, obeying an
ℓ∞ attack budget

∥xFGSM − x∥∞ = ϵ

Projected gradient descent (PGD) The PGD attack uses multiple gradient ascent steps and thus is
far more powerful than the FGSM attack which consists of a single step.

Figure 4: Pseudocode for a PGD attack with T steps and an ℓ∞ attack budget ϵ.

Adversarial training (AT) Adversarial training works well on making models robustify to ℓp attacks
but can reduce accuracy on non adversarial examples significantly.

• Sample minibatch
(
x(1), y(1)

)
, . . . ,

(
x(B), y(B)

)
from the training set

• Create x
(i)
adv (e.g., x

(i)
PGD

)
from x(i) for all i

• Optimize the average training loss on these adversarial training examples

Untargeted vs. targeted attacks Untargeted attacks tries to maximize the loss. Targeted attacks
optimize examples to be misclassified as a predetermined target ỹ

Figure 5: An example of untargeted vs. targeted attacks.

CS 182/282A, Spring 2022, Discussion 10 4

Methods for improving robustness

1. Using larger and more diverse data

2. Data augmentation

3. Using smooth activations such as GELUs instead of sharp activation such as ReLUs

References
[1] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.

In International Conference on Machine Learning, pages 1321–1330. PMLR, 2017.

CS 182/282A, Spring 2022, Discussion 10 5

	Robustness
	Confidence Calibration
	Distribution shift framework
	Domain adaptation
	Subpopulation shift
	Domain generalization

	Adversarial robustness
	A simple adversarial attack
	Generate adversarial examples

