
2022/04/25

Lecture 24: Midterm 2 review
CS 182 (“Deep Learning”)

1

Today’s lecture

• Today’s lecture is for 182 students only, and it is the last lecture

• No lecture Wednesday! You have midterm 2 instead

• Same high level points as the last midterm review lecture: no new content, not a
substitute for studying on your own, we may not get through all slides, etc.

• Reviewing the last midterm review slide deck is also a good idea

2

Midterm 2 logistics

• For all students with standard accommodations (if you’re not sure, this is you):

• Midterm time is 5-7pm — arrive promptly at 5pm, we begin promptly at 5:10

• Everyone is here in this room (Dwinelle 155)

• Students with DSP accommodations: make a private Piazza post if you have not
yet received your specific logistics

• One double sided 8.5x11in cheat sheet is permitted

3

Modeling sequential data

4

Problem setup

• We now consider settings in which our features represent sequential data which
may be variable length 
 
 
 

• Our labels could be scalars , e.g., sentiment analysis, identification, …

• Or the labels could be sequences ! E.g., translation, transcription, captioning, …

• Or there could be no label at all! I.e., unsupervised learning / generative modeling

x

y

y

5

Recurrent networks

• What does this look like, mathematically, both for “vanilla” RNNs and LSTMs?

• In many applications, we think of each as a “time step” (denoted instead) and
each as the “state” (or hidden state) at time step (denoted instead)

l t
a(l) l h(t)

6

softmax

a(2)

…

a(1) a(L) z

“my” “dog” “homework”

a(0)

Sequential outputs

• This is what our RNN will look like for “sequence input, single output”

• What about sequence output? Just have an output at every layer

7

softmax

za(2)

…

a(1) a(L)

“my” “dog” “homework”

a(0)

z(1)

softmax

z(2)

softmax

z(L)

softmax…

Autoregressive generation

• Generating a sequential output from an RNN, e.g., to caption an input image, is done in
an autoregressive manner

• This makes it possible for the RNN to condition on what it has already generated
8

<start>

a(2)

…

a(L)a(1)

z(1)

softmax

z(2)

softmax

z(L)

softmax

a(0)

“a” “good” “boy”

Transformers

• Be familiar with the details of how attention and self-attention work

• Understand the differences between transformer encoders and decoders

• Be familiar with all of the transformer details we went over

• Understand all of the transformer based models we went over, in particular:
BERT, GPT, ViT, MAE

• How are they trained, how are they evaluated, what are they good/bad at, etc.

9

Sequence to sequence models

10

RNN (LSTM) seq2seq, the basic version

11

<start>

softmax softmax softmax

“a” “cute” “puppy”“un” “chiot” “mignon”

Attention

12

<start>“un” “chiot” “mignon”

k1 k2 k3

v1 v2 v3

q1

…

softmax

“a”

Seq2seq transformers

13

transformer
encoder

“a”
“cute”
“puppy”

transformer
decoder

“un”
“chiot”
“mignon”

Natural language processing guest lecture

• Understand the details behind decoding: beam search and item scoring

• Understand training details such as teacher forcing, label smoothing

• Understand how text is actually represented as tokens, specifically, BPE

• Everything up to slide 23 (first slide about multilingual translation) is fair game, this
is how far John got in lecture

14

Distribution shift and robustness

15

ImageNet challenge test sets

16

ImageNet-C

ImageNet-R ImageNet-A Stylized ImageNet

ImageNet-Sketch

The benchmark
https://wilds.stanford.edu

17

https://wilds.stanford.edu

In NLP: the ANLI dataset

18

• Natural language inference is the task of determining if a premise sentence and
hypothesis sentence are related through contradiction, neutrality, or entailment

• The adversarial natural language inference (ANLI) dataset consists of
crowdsourced hypotheses written to fool state-of-the-art models

• To construct the dataset: an annotator is asked to write a hypothesis given a
premise and a condition (contradiction, neutrality, or entailment)

• If the model correctly predicts the condition, the annotator is asked to try again

• If the model predicts incorrectly, the hypothesis is verified by other annotators

What improves distributional robustness?

• Training larger models on larger datasets

• Strong data augmentations, e.g., Mixup, AutoAugment, AugMix, PixMix

• Better architectures and training objectives: the current state of the art numbers
for ImageNet-C, R, A, and Sketch (using only the ImageNet training set) are
obtained with ViT models pretrained with a masked autoencoding objective

• Be familiar with the details of all of the above

19

Anomaly detection: the basics

• We would like for our model to assign an anomaly score to every input — the
higher the score, the more anomalous the model thinks the example is

• An intuitive idea would be to try and learn a model of (a generative model)
and treat an as anomalous if it has low according to the model

• This currently does not work well! Modern deep generative models often still
do poorly at anomaly detection using this scheme for complex input spaces

• There are some ways to make deep generative models useful for anomaly
detection, though they are more complex and require additional assumptions

x

p(x)
x p(x)

20

A simple baseline for anomaly detection

• A better approach that does not involve training a generative model is to use the
model’s confidence to detect anomalies

• Specifically, use as the anomaly score

• In some contexts, (negative of max logit) may work better

• This simple baseline works reliably across computer vision, NLP, and speech
recognition classification tasks, though it can’t detect adversarial examples

max
k

pθ(y = k |x)

− max
k

pθ(y = k |x)

− max
k

zk

21

Model calibration

• Another concept related to the general reliability of machine learning models, but
not tied to distribution shift, is model calibration

• We measure calibration by comparing a model’s confidence against its accuracy

• Well calibrated models are more trustworthy, 
easier to integrate, and more interpretable

• Calibration under distribution shift is hard

• Understand the basics behind temperature scaling 
and deep neural network ensembles

22

Characterizing real-world distribution shifts
Problem settings and frameworks

23

train distribution

test distribution

Empirical risk 
minimization Domain adaptation Subpopulation shift Domain generalization

Domain adaptation

• What if we knew at training time which test distribution we want to do well on?

• In this case, shouldn’t we just train with the test distribution?

• The issue is that data from the test distribution may be difficult to collect

• So, the assumption (as typically stated) made by domain adaptation is that we
have abundant training data from a source domain and only a small amount of
training data from the target domain which is the actual domain of interest

• E.g., source vs. target could be simulation vs. the real world

• Or, e.g., the overall population vs. an underrepresented group of interest
24

Invariant feature learning

• At a high level, invariance in this context (usually) means that we wish for the
feature distributions between the source and target data to look identical

• Intuitively, if the model is outputting similar features for both source and target
data and predicting well for source data, we may expect that it will also predict
well on target data

• A few approaches have been proposed for invariant feature learning: trying to
fool learned domain discriminators and matching distribution statistics between
the source and target data

• Be sure to understand these approaches at a high level

25

Subpopulation shift

• In subpopulation shift, we assume several training domains rather than just two

• Domains are also referred to as “groups” or “subpopulations” in this context

• The key challenge in subpopulation shift is that some domains are
underrepresented in the training data

• However, those domains may contribute significantly to the model’s generalization
performance, either because they will be equally represented in the test
distribution, or because we care about fairness across domains

• In the latter case, it is natural to measure weighted or worst-case performance

26

Distributional (group) robustness

• Distributional robustness, in general, aims to train a model against an adversary that can
change the data distribution to try and make the model worse

• In group robustness, the adversary is only allowed to change the distribution of domains

• Letting be the probability of domain , we have:

• Rebalancing the training data (by upsampling rare domains or downsampling common
domains) turns out to be very effective at improving the worst-case performance

• This is also a common and effective trick for handling class imbalance

• We can sometimes further improve performance by weighting the loss function as well

pi i min
θ

max
p1,…,pD

∑
D

d=1
pd𝔼d[ℓ(θ; X, Y)]

27

Domain generalization

• Similar to subpopulation shift, domain generalization assumes several
domains are provided at training time

• However, we typically do not assume that there is a domain imbalance issue that
we must combat, e.g., via robustness

• Instead, we assume that we will be given new domains at test time, and our goal
is to generalize to these new domains

• Sometimes, this problem setting is referred to as zero-shot domain adaptation or
multi-source domain adaptation

28

Test time adaptation

“standard” model:

adaptive model:

in practice, approximate with

g : 𝒳 → 𝒴

f : 𝒳 × 𝒫x → 𝒴

𝒫x (x1, …, xK)
29

BN adaptation (image from Nado et al, ’20) rotation prediction (Sun et al, ICML ’20) entropy minimization (Wang et al, ICLR ’21)

Self-supervised learning via:

ImageNet-C

Adversarial robustness
A threat model

• A simple threat model is to assume the adversary has an attack distortion
budget , i.e., for some assumed and ,

• Not all distortions have a small norm, e.g., rotations — this simplistic threat
model is common because it is a more tractable subproblem

• The adversary’s goal is usually to find a distortion that maximizes the loss
subject to its budget:

• Review the details for both the FGSM and PGD attacks

ℓp
ϵ p ϵ ∥xadv − x∥p ≤ ϵ

ℓp

δ
xadv = x + arg max

δ:∥δ∥p≤ϵ
ℓ(θ; x + δ, y)

30

Adversarial training (AT)

• The best way (we know of) to robustify models to attacks is adversarial training (AT)

• A common AT procedure is as follows:

Sample minibatch from the training set

Create (e.g.,) from for all

Optimize the average training loss on these adversarial training examples

• This does come with some downsides: currently, AT can reduce accuracy on non
adversarial (“clean”) examples by 10%+

ℓp

(x(1), y(1)), …, (x(B), y(B))

x(i)
adv x(i)

PGD x(i) i

31

Transferability of attacks

• An adversarial example crafted for one model can potentially be used to attack
many different models

• Given neural network models and , designed for sometimes also
results in a high loss for , even if is a different architecture

• Transfer rates can vary greatly, but even moderate amounts of transferability
demonstrate that adversarial failure modes are somewhat shared across models

• Consequently, an attacker does not always need access to a model’s
parameters or architectural information in order to try and attack it

M1 M2 xadv M1
M2(xadv) M2

32

What improves adversarial robustness?

• Using larger and more diverse data

• Data augmentation, e.g., Cutout and CutMix

• Architectural choices such as using GELUs rather than ReLUs

• Be familiar with the details of all of the above

33

Unforeseen adversaries

• In practice, attackers could use unforeseen or 
novel attacks whose specifications are not 
known during training

• Models are far less robust to attacks they have 
not trained against, even if they have trained 
against other attacks

• To estimate robustness to unforeseen attacks, 
we should measure robustness to multiple 
attacks not encountered during training

34

Deep Unsupervised Learning

35

Density/distribution modeling
Some potential motivations

• Why might we be interested in trying to model the data distribution?

• Generation: synthesize new data points that are useful/interesting/pretty

• Conditional generation: synthesize specific data points of interest

• Density modeling: understand/analyze the likelihood of various data points

• Doesn’t work that well OOD, at least not yet, but still could be useful…

• Representation learning (or compression, or dimensionality reduction, etc.):
convert high dimensional data into lower dimensional representations

36

GANs summary

• GANs are the go-to model for image generation

• Other types of models are catching up in terms of generated quality, however,
they currently have other downsides such as being much slower to generate

• However, GANs are not density models, and there is not really a way to obtain
probability estimates of data points from a GAN

• Consequently, this makes GANs harder to evaluate as well — how can we say
whether one GAN is better than another GAN (or some other model)?

• Metrics for evaluating GANs usually rely on inputting generated images into a
pretrained classifier (e.g., Inception and FID scores), but this is contentious

37

Autoregressive models summary

• Autoregressive models offer “best in class” modeling performance, oftentimes both
qualitatively in terms of generation and quantitatively in terms of likelihood metrics

• This is true beyond images — there are very good autoregressive models for language
(we already knew this) and audio (e.g., a somewhat dated example is WaveNet)

• Similar to GANs, we can modify autoregressive models to do conditional generation

• GANs are still superior when it comes to image generation

• Generating from autoregressive models is also very slow, comparatively speaking

• Lastly, autoregressive models do not naturally provide a notion of a latent space, so they
are not used for representation learning

38

VAEs summary

• VAEs provide natural mechanisms for both representation learning and generation

• Though estimating is difficult, a lower bound can easily be obtained

• However, there is typically a tradeoff involved between representation learning and
generation quality

• The VAEs which synthesize the best data points and result in the best (lower
bounds of) likelihoods utilize complex priors and modeling choices, e.g.,
quantization and multiple levels of latent variables

• This can make extracting useful representations more difficult

pθ(x)

39

What is self-supervised learning?
According to Prof. Yann LeCun

40

Contrastive learning

• Several self-supervised learning methods are based on contrastive learning:
learned representations should be close together for “similar” inputs and far apart
for “dissimilar” inputs (we will define “similar” and “dissimilar” shortly)

•
The most common contrastive learning loss is

• Be familiar with CPC, MoCo, SimCLR, and CLIP at a high level

−log
exp{z⊤z+/τ}

∑K
i=1 exp{z⊤zi/τ}

41

Masked autoencoding

• Randomly masking out parts of the input (e.g., 15% of tokens or 75% of image
patches) and predicting these parts is a very effective self-supervised approach

• MAE vision transformers and BERT are both primarily transformer encoders that
turn (masked) inputs into representations that are useful for downstream tasks

• During training, they are equipped with simple decoders, e.g., token classifiers
for BERT and a small transformer (but not a transformer decoder) for MAE

• These decoders attempt to recover the original input that was masked out,
and the encoder is thus trained to produce useful contextual representations

42

Massive models + the last guest lectures

43

Scaling laws for neural language models
Kaplan et al, 2020

44

Larger models require fewer samples
to reach the same performance

10

8

6

4

The optimal model size grows smoothly
with the loss target and compute budget

Line color indicates

number of parameters

107 109 1011

Tokens Processed Compute (PF-days)
10-9 10-6 10-3 100

Test Loss

Compute-efficient
training stops far
short of convergence

103 109106

103 Params

109 Params

10

8

6

4

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

Te
st

 L
os

s

Massive models

• Be familiar with GPT-3, Gopher, Chinchilla, Megatron-Turing NLG, and PaLM

• What did we learn from these different models? (maybe not much, from some)

• What is similar about these models? What is different?

• How do these models typically solve new tasks?

• Compare and contrast: few-shot prompting, chain-of-thought prompting, and
“traditional” fine tuning

45

Potential harms and biases

• Papers about large models now typically come with a model card describing its
details and intended uses, along with some analysis about potential harms

• For example, GPT-3 was analyzed for gender, race, and religion biases, and this
shed light on its predispositions that (unfortunately) seem in line with its training

• This analysis has also been carried out for the three other models mentioned

• Analysis on Gopher (and, to an extent, PaLM) demonstrates that large models,
when given a toxic prompt, are more likely to generate toxic continuations

• These concerns, and more, have to be carefully studied and mitigated before
deploying such models into sensitive applications

46

Meta-learning guest lecture

• Understand the motivations behind meta-learning and few-shot learning

• Understand the meta-learning problem setup and assumptions

• Understand the differences between black-box, optimization-based, and
nonparametric meta-learning

• Read through the case study for student feedback generation and understand
the high level details

47

Deep reinforcement learning guest lecture

• Understand the main challenges in applying the concepts we’ve learned to
reinforcement learning (RL) and control

• Understand the terminology, e.g., what is the difference between observation
and state?

• Understand the general approaches of behavioral cloning and DAgger

• Understand, at a high level, the basics of Q-learning and offline RL, as well as
why offline RL is an interesting/important problem to study

48

Good luck!

49

