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Lecture 21: Massive models
CS 182/282A (“Deep Learning”)
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Today’s lecture

• Today, we take a tour of the current landscape of massive models 

• There are only a handful of models with >100B parameters, all of them (as far as 
I know) are transformer decoder language models 

• We will go over the high level details of four of these models 

• A natural question is whether moving in this direction is the right way to go; we 
will study this question theoretically, via scaling laws, as well as practically 

• Finally, we will review some applications and current limitations of these models
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Scaling laws
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Scaling laws for neural language models
Kaplan et al, 2020
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Scaling laws for neural language models
Kaplan et al, 2020

• These scaling laws hold for over six orders of magnitude for amount of available 
compute and model size 

• Model size and dataset size need to be scaled together, but not equally — roughly, 
 model size increase requires only  dataset size increase 

• This point is disputed by some other work that says equal scaling is best 

• Larger models require fewer data points and optimization steps to reach the same 
performance as smaller models 

• For a fixed compute budget, the best performance is obtained by training large 
models and stopping well short of convergence
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Scaling laws for autoregressive generative modeling
Henighan et al, 2020
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Economic infeasibility
https://cset.georgetown.edu/wp-content/uploads/AI-and-Compute-How-Much-Longer-Can-Computing-Power-
Drive-Artificial-Intelligence-Progress_v2.pdf
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Massive text models
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Scaling models also scales author lists
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GPT-3
Brown et al, 2020

• 175B parameter transformer decoder, combined training set is ~500B tokens 
(though the model is only actually trained for 300B tokens)
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GPT-3
Brown et al, 2020

• GPT-3 demonstrates impressive few-shot 
learning performance, though there is still room 
for significant improvement
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Gopher
Rae et al, 2021

• Gopher is a 280B parameter transformer decoder 

• The training set has over 2T tokens, the model is still only trained for 300B tokens
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Gopher
Rae et al, 2021
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Chinchilla: a “smaller Gopher”
Hoffmann et al, 2022

• Chinchilla considers varying hyperparameters (primarily, learning rate schedule) 
that Kaplan et al held fixed, which leads to different scaling conclusions 

• In particular, they advocate that model and data size scaling should be equal
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Chinchilla performance
On Massive Multitask Language Understanding (MMLU)

• The MMLU benchmark contains exam questions from 57 academic subjects, 
ranging from elementary to professional level difficulty
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Megatron-Turing NLG
Smith et al, 2022

• MT-NLG is a 530B parameter transformer decoder 

• Training set is (a puny) 339B tokens, training is done with 270B tokens
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PaLM
Chowdhery et al, 2022

• PaLM is a 540B parameter (yes, you guessed it) transformer decoder 

• Training set: 780B tokens; training: one full epoch!
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PaLM
Chowdhery et al, 2022
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• PaLM improves across a number of natural language tasks, including the recently 
proposed BIG-Bench (right), a recently proposed benchmark of >200 tasks 
designed for evaluating large language models



Applications of massive models
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Few-shot learning via prompting

• GPT-3’s prompting strategy has also been adopted by other large models: 
provide some number of examples of the task within the model’s input itself 

• Often, the number of examples is less than 10 

• Prompt engineering is now an important part of getting large models to 
perform their best, and this often requires some fiddling to get right 

• PaLM sometimes uses chain-of-thought prompting, which not only prompts 
with the correct answer but also the process by which that answer is reached 

• This significantly improves performance for some more complex tasks
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PaLM + chain-of-thought + self-consistency

• Further combined with self-consistency (sampling multiple answers and picking 
the most consistent answer), PaLM + chain-of-thought results in substantial 
improvements on eighth grade arithmetic word problems (GSM8K)
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PaLM can explain jokes with chain-of-thought prompting
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“Medium-shot” learning with fine tuning

• Fine tuning usually refers to updating the model via gradient based optimization 
with a small dataset (hundreds or thousands of data points) 

• With the size of these models, even this can be impractical or even infeasible 

• GPT-3 offers fine tuning as part of the OpenAI API 

• When possible, fine tuning still outperforms prompting significantly
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Specializing to code: Codex and AlphaCode

• Codex is a 12B parameter model that starts from a (smaller) GPT-3 and fine 
tunes on 159GB of code from Github 

• This model is what powers Github Copilot: https://copilot.github.com/ 

• AlphaCode scales up capabilities to competition level coding, achieving 
performance comparable to the median competitor 

• Scaling up model size (41B) and dataset size (715GB), changing the model 
architecture to be an encoder-decoder, fine tuning on competition code, and 
sampling/filtering many candidate solutions all help in scaling to this level
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Limitations of (current) massive models
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Challenge tasks

• A number of tasks still elude the largest models and may be beyond the reach of 
simply making the models even bigger 

• Challenge sets designed to “stress test” models, e.g., ANLI, still have 
significant room for improvement, and scaling up is making slow progress 

• Hard tasks, such as generating solutions for high school math competition 
problems, also have very low accuracy even for the largest models 

• This is even after these models are trained / fine tuned with more text/code/math 
than a human will ever see in their lifetime, so it seems like something is missing
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Potential harms and biases

• Papers about large models now typically come with a model card describing its 
details and intended uses, along with some analysis about potential harms 

• For example, GPT-3 was analyzed for gender, race, and religion biases, and this 
shed light on its predispositions that (unfortunately) seem in line with its training 

• This analysis has also been carried out for the three other models mentioned 

• Analysis on Gopher (and, to an extent, PaLM) demonstrates that large models, 
when given a toxic prompt, are more likely to generate toxic continuations 

• These concerns, and more, have to be carefully studied and mitigated before 
deploying such models into sensitive applications
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Summary

• Massive models represent another potential paradigm shift within machine 
learning: pretraining + fine tuning was one such shift over the last ~10 years, but 
now perhaps we don’t even need to do fine tuning anymore! 

• In some ways, this may be more accessible (fewer data/expertise requirements); 
in other ways, this may be less accessible (compute requirements, privatization) 

• Massive models still have problems in which they struggle, and they are primarily 
language models at the moment, but this may all change over the next few years 

• As these models continue to proliferate, careful auditing of the potential benefits 
vs. potential harms will be needed to truly understand their full impact
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