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loday'’s lecture

e [oday, we take a tour of the current landscape of massive models

e There are only a handful of models with >100B parameters, all of them (as far as
| know) are transformer decoder language models

e \We will go over the high level details of four of these models

* A natural question is whether moving In this direction is the right way to go; we
will study this question theoretically, via scaling laws, as well as practically

e Finally, we will review some applications and current limitations of these models



Scaling laws



Scaling laws for neural language models
Kaplan et al, 2020
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Scaling laws for neural language models
Kaplan et al, 2020

* [hese scaling laws hold for over six orders of magnitude for amount of available
compute and model size

* Model size and dataset size need to be scaled together, but not equally — roughly,
8 X model size increase requires only S X dataset size increase

* [his point is disputed by some other work that says equal scaling Is best

* [arger models require fewer data points and optimization steps to reach the same
performance as smaller models

e [or a fixed compute budget, the best performance is obtained by training large
models and stopping well short of convergence

5



Scaling laws for autoregressive

Henighan et al, 2020

Reducible Loss

Images

150 4
125 1
10° 4

75 1

8x8, loss per image

50 1

101 1

(toe503) """ h

T T T

107° 10~ 1074 1074 10°

Compute (PF-days)

3 108

107
10°

10°

5109

glO8
107
10°

10°

1.5
1)2
1991

0.6 1

0.3

1071 4

Text—Image

Image — Text

1.50 1
1.25;

10° 1
0.75

0.50 1

0.25;

generative modeling

3 108
107

10°

- 108

10’

10°

10°

R (‘ﬁ)-o.m \‘s\
1078 101*' 1o'*~l 10'*' 1(')
Language

SN

2 T \\\\\\\
--------- L =2.57-C~0-048
15 T I T T =
107° 10~4 107 10" 10° 104

Line color denotes model size

108

107

10°

10°

104

_ 1011

. 1010

10°

_ 107

i 106



Economic infeasibility

https://cset.georgetown.edu/wp-content/uploads/AIl-and-Compute-How-Much-Longer-Can-Computing-Power-

Drive-Artificial-Intelligence-Progress v2.pdf
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GPT-3

Brown et al, 2020

e 1/5B parameter transformer decoder, combined training set is ~500B tokens
(though the model is only actually trained for 300B tokens)

Model Name Nparams Mlayers @model Mheads @head Batch Size Learning Rate
GPT-3 Sm: Quantity Weight in Epochs elapsed when () « 19—4
GPT.3 Me( Dataset (tokens)  traiming mix training for 300B tokens () « 10—4
GPT-3 Lar; Common Crawl (filtered) 410 billion 60% 0.44 5x 1074
GPT-3 XL. WebText2 19 billion 22% 2.9 0x 104
GPT-3 2.71 Booksl 12 billion 8% 1.9 6 x 10~4
GPT-3 6.71 Books2 55 billion 8% 0.43 2 % 104
GPT-3 13B Wikipedia 3 billion 3% 3.4 0 x 10—4
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~
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GPT-3

Brown et al, 2020

Zero-shot

The model predicts the answer given only a natural language ° G PT_8 demOnSt rates Im preSSIVe feW_ShOt
description of the task. No gradient updates are performed. earr Iﬂg perfOrrT aﬂce, thO Jgh there |S Stl” roO0oIMm
for significant improvement

Translate English to French: task description
cheese => prompt
Few-shot
In addition to the task description, the model sees a few
One-shot examples of the task. No gradient updates are performed.

In addition to the task description, the model sees a single

example of the task. No gradient updates are performed. Translate English to French: task description
sea otter => loutre de mer examples
Translate English to French: task description SEEPAFTANT = mETliE penviee
sea otter => loutre de mer example slush ahrefe == grrefe peluchs
cheese => prompt cheese => prompt
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Gopher

Rae et al, 2021

e Gopher is a 280B parameter transformer decoder

* [he training set has over 21 tokens, the model is still only trained for 300B tokens

Disk Size Documents Tokens Sampling proportion

Model MassiveWeb 1.9TB 604M 506B 48% Batch Size
Books 2.1 TB 4M 560B 27%
o 075TB  IM 128 10% 0.25
417M News 2.7 TB 1.1B 676B 10% 0‘25M
1.4B GitHub 3.1 TB 142M 422B 3% 0.25M
7.1B Wikipedia  0.001 TB 6M 4B 2% .ZM

Gopher 280B 80 128 128 16,384 4x10™ 3M — 6M
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Gopher

Rae et al, 2021
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Chinchilla: a “smaller Gopher”
Hoffmann et al, 2022

e Chinchilla considers varying hyperparameters (primarily, learning rate schedule)
that Kaplan et al held fixed, which leads to different scaling conclusions

e |n particular, they advocate that model and data size scaling should be equal

1T

—— Approach 1
—— Approach 2
—— Approach 3
---- Kaplan et al (2020)
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Chinchilla performance
On Massive Multitask Language Understanding (MMLU)

e The MMLU benchmark contains exam questions from 57 academic subjects,
ranging from elementary to professional level difficulty

Task Chinchilla  Gopher | Task Chinchilla Gopher

abstract_algebra 31.0 25.0 anatomy 70.4 56.3

astronomy 73.0 65.8 business_ethics 72.0 70.0

clinical knowledge 75.1 67.2 college biology 79.9 70.8

college chemistry 51.0 45.0 college computer science 51.0 49.0

college_mathematics 32.0 37.0 college medicine 66.5 60.1 d 2 0
college physics 46.1 34.3 computer_security 76.0 65.0 m /
conceptual physics 67.2 49.4 econometrics 38.6 43.0 Ran 0 5 ’ O 0
electrical engineering 62.1 60.0 elementary mathematics 41.5 33.6 0
formal logic 33.3 35.7 global facts 39.0 38.0 Averag c human rater 34‘ 5 /0
high school biology 80.3 71.3 high school chemistry 58.1 47.8 0
high school computer science 58.0 54.0 high school european_history 78.8 72.1 GPT— 3 5 - ShOt 43 . 9 /O
high school geography 86.4 76.8 high school gov and politics 91.2 83.9

high school macroeconomics  70.5 65.1 high school mathematics 31.9 23.7 GOpheT 5 = ShOt 60 . O%
high school microeconomics 77.7 66.4 high school physics 36.4 33.8 . .

high school psychology 86.6 81.8 high school statistics 58.8 50.0 Chlnc hllla 5 - ShOt 6 7 o 6%
high school us_history 83.3 78.9 high school world history 85.2 75.1

human_aging 77.6 66.4 | human_sexuality 86.3 67.2 Average human expert performance 89.8%
international law 90.9 77.7 jurisprudence 79.6 71.3

logical fallacies 80.4 72.4 machine learning 41.1 41.1

management 82.5 77.7 m:elrketlng 89.7 83.3 Ju ne 2 O 2 2 FO recast 5 7 . 1 %
medical genetics 69.0 69.0 miscellaneous 84.5 75.7

moral disputes 77.5 66.8 moral scenarios 36.5 40.2 0
nutrition 77.1 69.9 philosophy 79.4 68.8 Ju ne 2 O 2 3 FO Ire CaSt 63 * 4 /0
prehistory 81.2 67.6 professional accounting 52.1 44.3

professional law 56.5 44.5 professional _medicine 75.4 64.0

professional psychology 75.7 68.1 public_relations 73.6 71.8

security studies 75.9 64.9 sociology 91.0 84.1

us_foreign policy 92.0 81.0 virology 53.6 47.0

world religions 87.7 84.2
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Megatron- Turing NLG

Smith et al, 2022

e MT-NLG is a 530B parameter transtormer decoder

e [raining set Is (a puny) 3398 tokens, training is done with 270B tokens

Dataset Tokens (billion) Weights (%) Epochs
Books3 25.7 143 15 oo s
WebText2 14.8 19.3 3.6 5 sl #" Megatron-Turing
OpenWebTex % (175B) _— NLG (530B)
Stack Exchange 11.6 5.7 1.4 e 100
PubMed Abstracts 4.4 2.9 1.8 g
Wlklpedla 4.2 4.8 3.2 & M eg(a8t ;OBn)-LM . Turing-NLG
Gutenberg (PG-19) 2.7 0.9 0.9 o 10 | Lo (17.28)
BookCorpus2 1.5 1.0 1.8 S V2
NIH ExPorter 0.3 0.2 1.8 = VA
ArXiv 20.8 1.4 0.2 £ S GPT2
GitHub 24.3 1.6 0.2 & (1.58)
Pile-CC 49.8 9.4 0.5 - / BERT-Large
O s
CC-2020-50 68.7 13.0 0.5 g 01 ¢ SAOND
CC-2021-04 82.6 15.7 0.5 (ZL‘{\:AO)
Realnews 21.9 9.0 1.1 0.01
CC-Stories 5.3 0.9 0.5 2018 2019 2020 2021 2022
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Pal_M

Chowdhery et al, 2022

e PalLM is a 540B parameter (yes, you guessed it) transformer decoder

e [raining set: 7808 tokens; training: one full epoch!

# of Parameters

Model Layers # of Heads dpodel (in billions) Batch Size
PaLM &B 32 16 4096 8.63 20060 — 512
PaLM 62B 64 32 8192 62.50 512 — 1024
PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048
Total dataset size = 780 billion tokens

Data source Proportion of data

Social media conversations (multilingual) 50%

Filtered webpages (multilingual) 27%

Books (English) 13%

GitHub (code) 5%

Wikipedia (multilingual) 4%

News (English) 1%
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Pal_M

Chowdhery et al, 2022

e PalLM improves across a number of natural language tasks, including the recently
proposed BIG-Bench (right), a recently proposed benchmark of >200 tasks
designed for evaluating large language models

100
+10 -
S 0
< =@— PalLM 5-shot
+8 IS 80 . Gopher 5-shot
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= ——
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o ke
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£ © 20
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Language Reasoning Reading Answering Completion 0 108 10° 1010 1011
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Applications of massive models



Few-shot learning via prompting

e GPI-3’s prompting strategy has also been adopted by other large models:
provide some number of examples of the task within the model's input itself

e Often, the number of examples is less than 10

* Prompt engineering is now an important part of getting large models to
perform their best, and this often requires some fiddling to get right

e PalLM sometimes uses chain-of-thought prompting, which not only prompts
with the correct answer but also the process by which that answer is reached

e This significantly improves performance for some more complex tasks
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PalLM + chain-of-thougnt + self-consistency

* Further combined with self-consistency (sampling multiple answers and picking
the most consistent answer), PaLM + chain-of-thought results in substantial
improvements on eighth grade arithmetic word problems (GSM8K)

80

60

3 55
>
O
(o 40
-
QO
< 33
%
= 20
)
O

0

Finetuned Finetuned PaLM + chain of PaLM + chain of
GPT-3 GPT-3 + verifier thought thought +

self-consistency
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PalLM can explain jokes with chain-of-thought prompting

Explaining a joke

Prompt
Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two

different pods!

4 s - p |

Model Response \

Prediction: TPUs are a type of computer chip that Google uses Bé}o
for deep learning. A "pod" is a group of TPUs. A "pod" 1is also a ¢
group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker 1is
pretending that the whale 1is able to communicate between two

groups of TPUs.

0000
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‘Medium-shot” learning with fine tuning

* Fine tuning usually refers to updating the model via gradient based optimization
with a small dataset (hundreds or thousands of data points)

e With the size of these models, even this can be impractical or even infeasible
e GPT-3 offers fine tuning as part of the OpenAl AP

e \When possible, fine tuning still outperforms prompting significantly

Model BoolQ CB CoPA  MultiRC Record RTE WiC WSC

Few-shot  89.1 89.3 95 86.3 /- 92.9/- 812 64.6 89.5
Finetuned  92.2  100/100 100  90.1/69.2 94.0/94.6 95.7 78.8 100

Table 7: Results on SuperGLUE dev set comparing PaLM-540B few-shot and finetuned.
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Specializing to code: Codex and AlphaCode

e Codex is a 12B parameter model that starts from a (smaller) GPT-3 and fine
tunes on 159GB of code from Github

e This model is what powers Github Copilot: https://copilot.github.com/

e AlphaCode scales up capabilities to competition level coding, achieving
performance comparable to the median competitor

e Scaling up model size (41B) and datase
architecture to be an encoder-decoder, fir

Sdll’

pling/filtering many candidate solutior
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| imitations of (current) massive models



Challenge tasks

e A number of tasks still elude the largest models and may be beyond the reach of
simply making the models even bigger

e Challenge sets designed to “stress test” models, e.g., ANLI, still have
significant room for improvement, and scaling up I1s making slow progress

e Hard tasks, such as generating solutions for high school math competition
problems, also have very low accuracy even for the largest models

e This is even after these models are trained / fine tuned with more text/code/math
than a human will ever see in their lifetime, so it seems like something Is missing

26



Potential harms and bilases

e Papers about large models now typically come with a model card describing its
details and intended uses, along with some analysis about potential harms

e For example, GPT-3 was analyzed for gender, race, and religion biases, and this
shed light on its predispositions that (unfortunately) seem in line with its training

e [his analysis has also been carried out for the three other models mentioned

e Analysis on Gopher (and, to an extent, PaLM) demonstrates that large models,
when given a toxic prompt, are more likely to generate toxic continuations

e [hese concerns, and more, have to be carefully studied and mitigated before
deploying such models into sensitive applications
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Summary

e Massive models represent another potential paradigm shift within machine
learning: pretraining + fine tuning was one such shift over the last ~10 years, but
now perhaps we don’t even need to do fine tuning anymore!

* |[n some ways, this may be mo

e Massive models still have prob
language models at the mome

 As these models continue to p

re accessible (fewer data/expertise requirements);

iNn other ways, this may be less accessible (compute requirements, privatization)

ems in which they struggle, and they are primarily
Nt, but this may all change over the next few years

roliferate, careful auditing of the potential benefits

vs. potential harms will be needed to truly understand their full impact

28



