Lecture 21: Massive models CS 182/282A ("Deep Learning")

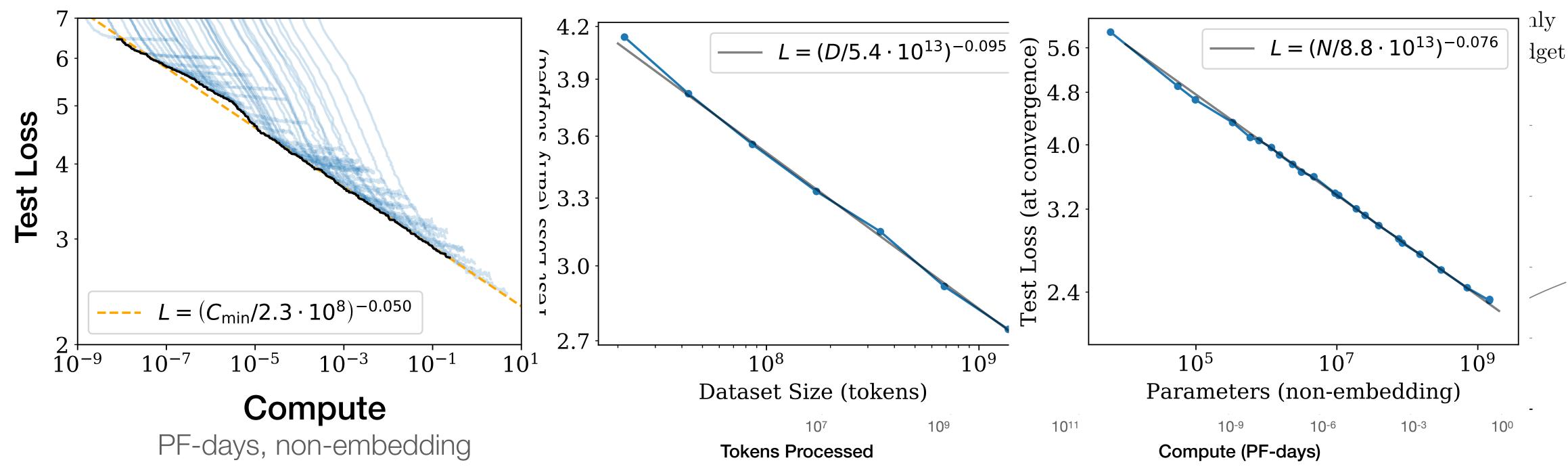
2022/04/13

Today's lecture

- Today, we take a tour of the current landscape of massive models
- There are only a handful of models with >100B parameters, all of them (as far as I know) are transformer decoder language models
- We will go over the high level details of four of these models
- A natural question is whether moving in this direction is the right way to go; we will study this question theoretically, via scaling laws, as well as practically
- Finally, we will review some applications and current limitations of these models

Scaling laws

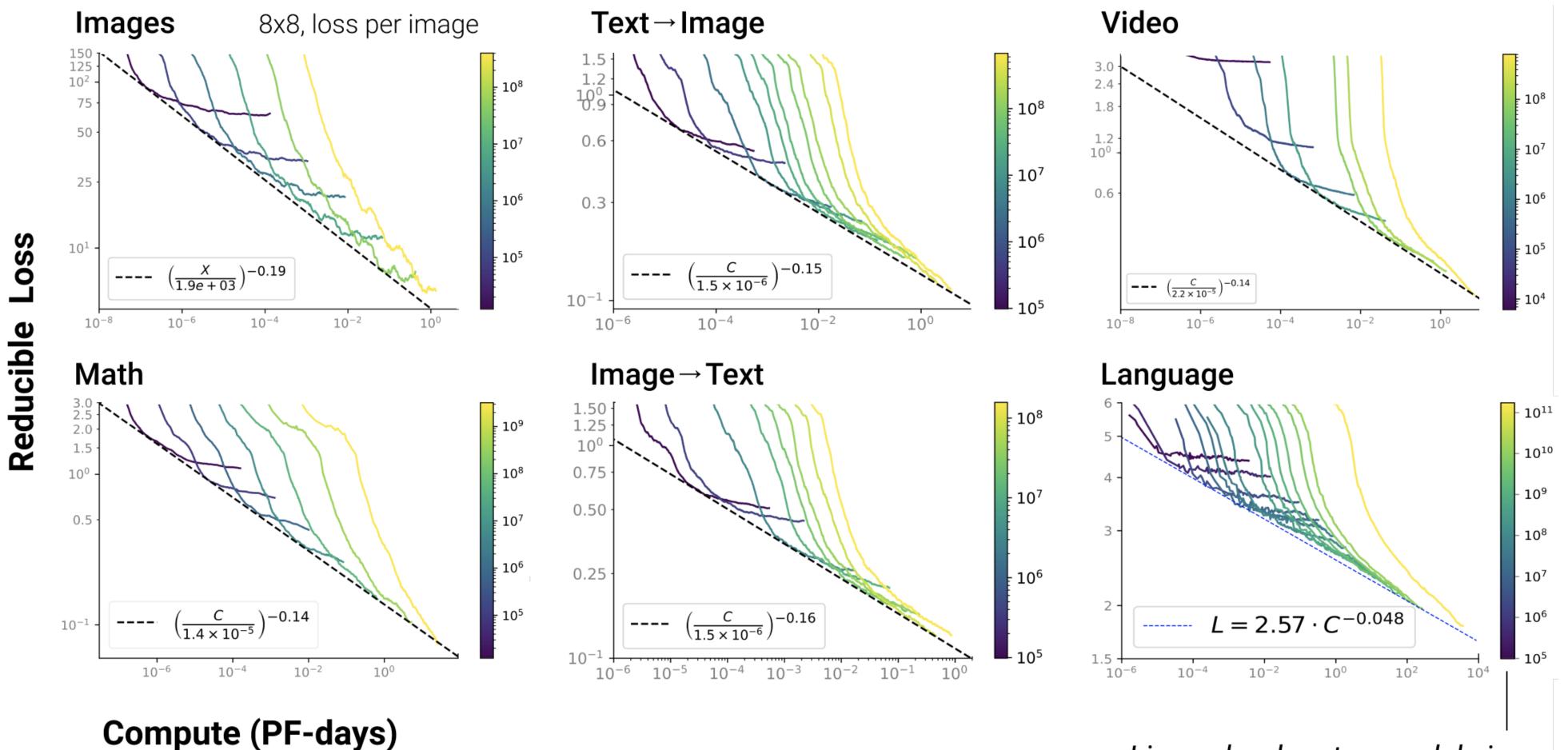
Scaling laws for neural language models Kaplan et al, 2020



Scaling laws for neural language models Kaplan et al, 2020

- These scaling laws hold for over six orders of magnitude for amount of available compute and model size
- Model size and dataset size need to be scaled together, but not equally roughly, $8 \times$ model size increase requires only $5 \times$ dataset size increase
 - This point is disputed by some other work that says equal scaling is best
- Larger models require fewer data points and optimization steps to reach the same performance as smaller models
- For a fixed compute budget, the best performance is obtained by training large models and stopping well short of convergence

Scaling laws for autoregressive generative modeling Henighan et al, 2020

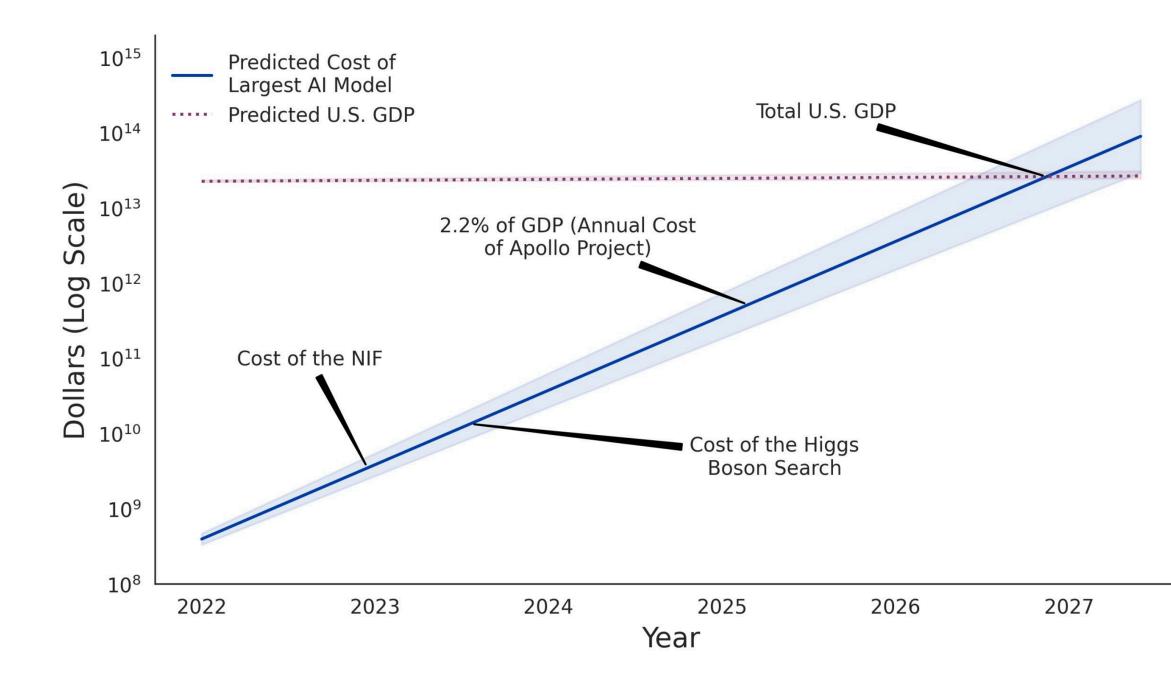


Compute (PF-days)

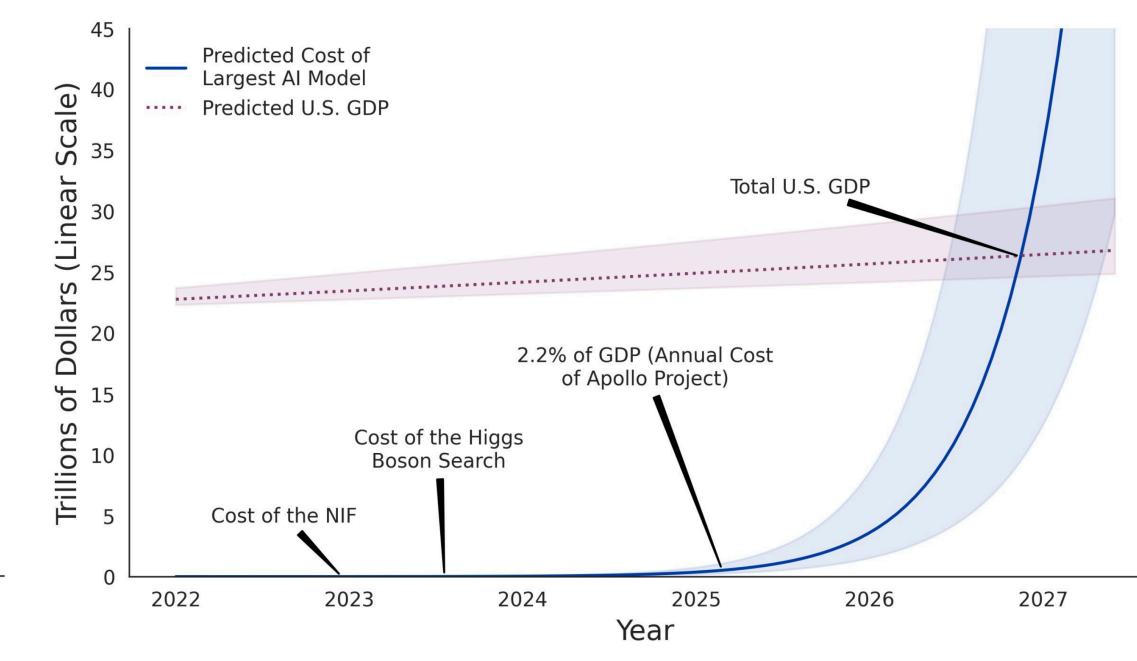
Line color denotes model size

Economic infeasibility

Drive-Artificial-Intelligence-Progress v2.pdf



https://cset.georgetown.edu/wp-content/uploads/AI-and-Compute-How-Much-Longer-Can-Computing-Power-



Massive text models

Scaling models also scales author lists

Language Models are Few-Shot Learners

Tom B. Bro	wn* Benjamin	Mann* Nick	Ryder* Me	lanie Subbiah*
Jared Kaplan †	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Krueger	Tom Henighan
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter
Christopher He	esse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray
Benjar	min Chess	Jack Clark	Christopher	Berner
Sam McCan	ndlish Alec Ra	ndford Ilya S	utskever I	Dario Amodei

Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model

Shaden Smith^{§,†}, Mostofa Patwary^{§,‡}, Brandon Norick[†], Patrick LeGresley[‡], Samyam Rajbhandari[†], Jared Casper[‡], Zhun Liu[†], Shrimai Prabhumoye[‡], George Zerveas^{*†}, Vijay Korthikanti[‡], Elton Zhang[†], Rewon Child[‡], Reza Yazdani Aminabadi[†], Julie Bernauer[‡], Xia Song[†], Mohammad Shoeybi[‡], Yuxiong He[†], Michael Houston[‡], Saurabh Tiwary[†], and Bryan Catanzaro[‡]

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu and Geoffrey Irving

PaLM: Scaling Language Modeling with Pathways

Aakanksha Chowdhery* Sharan Narang* Jacob Devlin* Maarten Bosma Gaurav Mishra Adam Roberts Paul Barham Hyung Won Chung Charles Sutton Sebastian Gehrmann Parker Schuh Kensen Shi Sasha Tsvyashchenko Joshua Maynez Abhishek Rao[†] Parker Barnes Yi Tay Noam Shazeer[‡] Vinodkumar Prabhakaran Emily Reif Nan Du Ben Hutchinson Reiner Pope James Bradbury Jacob Austin Michael Isard Guy Gur-Ari Pengcheng Yin Toju Duke Anselm Levskaya Sanjay Ghemawat Sunipa Dev Henryk Michalewski Xavier Garcia Vedant Misra Kevin Robinson Liam Fedus Denny Zhou Daphne Ippolito David Luan[‡] Hyeontaek Lim Barret Zoph Alexander Spiridonov Ryan Sepassi David Dohan Shivani Agrawal Mark Omernick Andrew M. Dai Thanumalayan Sankaranarayana Pillai Marie Pellat Aitor Lewkowycz Erica Moreira Rewon Child Oleksandr Polozov[†] Katherine Lee Zongwei Zhou Xuezhi Wang Brennan Saeta Mark Diaz Orhan Firat Michele Catasta[†] Jason Wei Kathy Meier-Hellstern Douglas Eck Jeff Dean Slav Petrov Noah Fiedel

GPT-3 Brown et al, 2020

(though the model is only actually trained for 300B tokens)

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Sma GPT-3 Mea Dataset		Quant (toke)	•	Weight in aining mix	-	hs elapsed whe g for 300B tok	0 \ 10
GPT-3 Lar: Common Cra	wl (filtered)	410 bil	lion	60%		0.44	$5 imes 10^{-4}$
GPT-3 XL WebText2		19 bill	lion	22%		2.9	$0 imes 10^{-4}$
GPT-3 2.71 Books1		12 bill	lion	8%		1.9	$6 imes 10^{-4}$
GPT-3 6.71 Books2		55 bill	lion	8%		0.43	$2 imes 10^{-4}$
GPT-3 13B Wikipedia		3 billi	ion	3%		3.4	$0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

• 175B parameter transformer decoder, combined training set is ~500B tokens

GPT-3 Brown et al, 2020

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1	Translate English to French:	task description
2	cheese =>	← prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

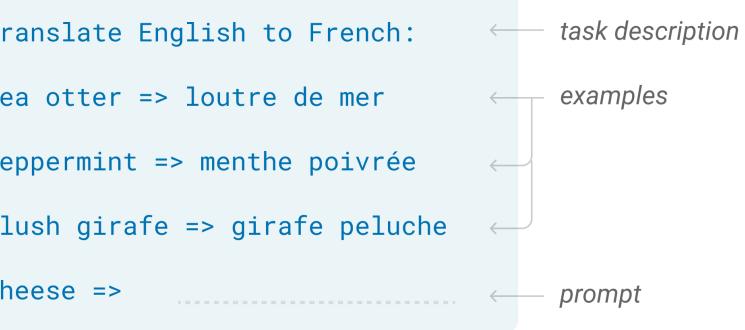


• GPT-3 demonstrates impressive *few-shot* learning performance, though there is still room for significant improvement

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Tr
se
pe
p]
cł



Gopher Rae et al, 2021

- Gopher is a 280B parameter transformer decoder

		Disk Size	Documents	Tokens	Sampling proportion	
Model	MassiveWeb	1.9 TB	604M	506B	48%	Batch Size
44M	Books	2.1 TB	4M	560B	27%	0.25M
	C4	0.75 TB	361M	182B	10%	
117M	News	2.7 TB	1.1B	676B	10%	0.25M
417M	GitHub	3.1 TB	142M	422B	3%	0.25M
1.4B 7.1B	Wikipedia	0.001 TB	6M	4B	2%	0.25M _ 2M
Gopher 280	B 80	128	1	28	16,384 4×10^{-5}	$3M \rightarrow 6M$

• The training set has over 2T tokens, the model is still only trained for 300B tokens

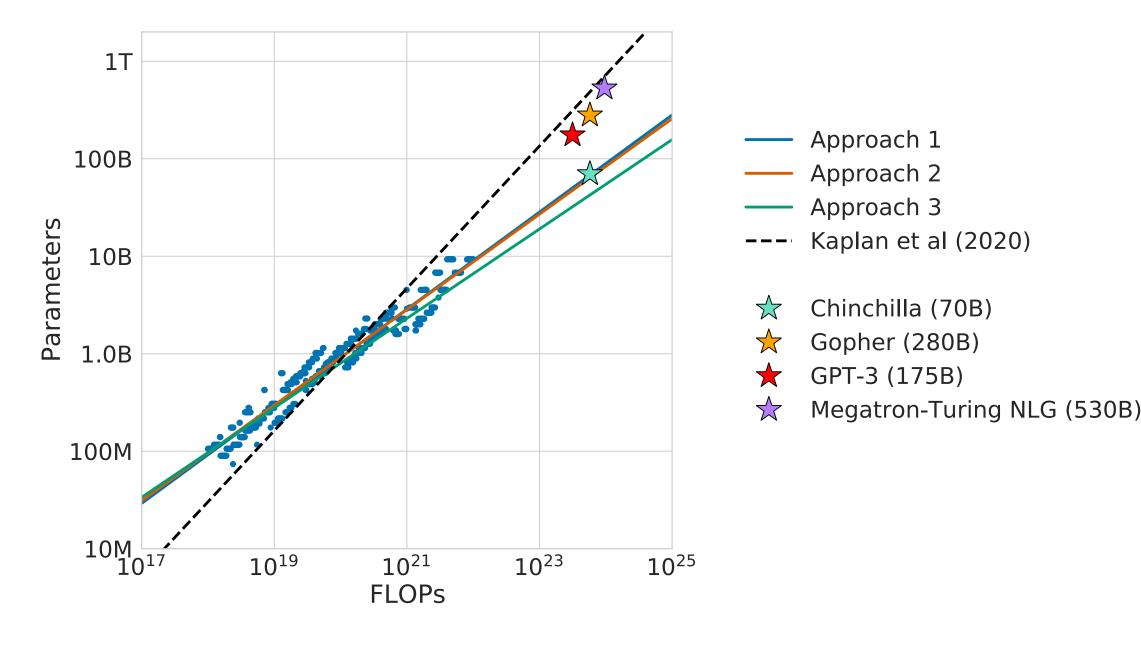
Gopher Rae et al, 2021

Ethics

Reading Comprehension

Chinchilla: a "smaller Gopher" Hoffmann et al, 2022

- that Kaplan et al held fixed, which leads to different scaling conclusions



• Chinchilla considers varying hyperparameters (primarily, learning rate schedule)

In particular, they advocate that model and data size scaling should be equal

Chinchilla performance On Massive Multitask Language Understanding (MMLU)

ranging from elementary to professional level difficulty

Task	Chinchilla	Gopher	Task	Chinchilla	Gopher		
abstract_algebra	31.0	25.0	anatomy	70.4	56.3		
astronomy	73.0	65.8	business_ethics	72.0	70.0		
clinical_knowledge	75.1	67.2	college_biology	79.9	70.8		
college_chemistry	51.0	45.0	college_computer_science	51.0	49.0		
college_mathematics	32.0	37.0	college_medicine	66.5	60.1	1	
college_physics	46.1	34.3	computer_security	76.0	65.0	Random	25.0
conceptual_physics	67.2	49.4	econometrics	38.6	43.0		
electrical_engineering	62.1	60.0	elementary_mathematics	41.5	33.6	Average human rater	34.5
formal_logic	33.3	35.7	global_facts	39.0	38.0		
high_school_biology	80.3	71.3	high_school_chemistry	58.1	47.8	GPT-3 5-shot	43.9
high_school_computer_science	58.0	54.0	high_school_european_history	78.8	72.1		10.7
high_school_geography	86.4 70 5	76.8	high_school_gov_and_politics	91.2 21.0	83.9	<i>Gopher</i> 5-shot	60.0
high_school_macroeconomics	70.5 77.7	65.1 66.4	high_school_mathematics	31.9 36.4	23.7 33.8	Ĩ	00.0
high_school_microeconomics high_school_psychology	86.6	81.8	high_school_physics high school statistics	58.8	55.8 50.0	Chinchilla 5-shot	67.6
high school us history	83.3	78.9	high_school_world_history	85.2	75.1		07.0
human aging	77.6	66.4	human sexuality	86.3	67.2	Average human expert performance	89.8
international law	90.9	77.7	jurisprudence	79.6	71.3	Merage numan expert performance	09.0
logical fallacies	80.4	72.4	machine learning	41.1	41.1		
management	82.5	77.7	marketing	89.7	83.3	June 2022 Forecast	57.1
medical genetics	69.0	69.0	miscellaneous	84.5	75.7	buile 2022 rorecust	57.1
moral_disputes	77.5	66.8	moral scenarios	36.5	40.2	June 2023 Forecast	63.4
nutrition	77.1	69.9	philosophy	79.4	68.8	Julie 2025 Forecast	03
prehistory	81.2	67.6	professional_accounting	52.1	44.3		
professional_law	56.5	44.5	professional_medicine	75.4	64.0		
professional_psychology	75.7	68.1	public_relations	73.6	71.8		
security_studies	75.9	64.9	sociology	91.0	84.1		
us_foreign_policy	92.0	81.0	virology	53.6	47.0		
world_religions	87.7	84.2					

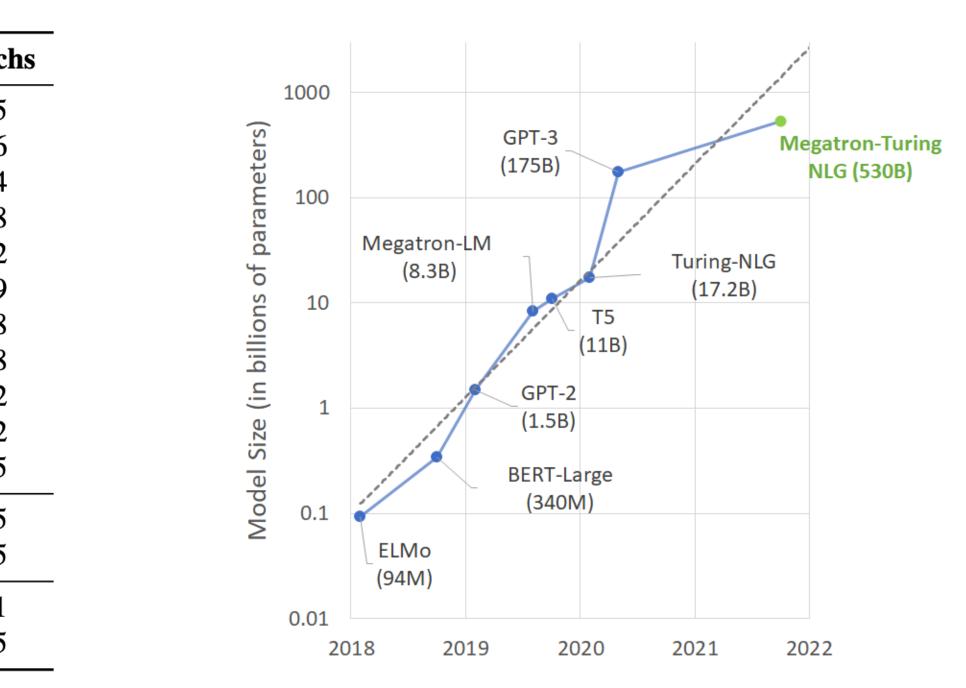
The MMLU benchmark contains exam questions from 57 academic subjects,

15

Megatron-Turing NLG Smith et al, 2022

- MT-NLG is a 530B parameter transformer decoder
- Training set is (a puny) 339B tokens, training is done with 270B tokens

Dataset	Tokens (billion)	Weights (%)	Epoch
Books3	25.7	14.3	1.5
OpenWebText2	14.8	19.3	3.6
Stack Exchange	11.6	5.7	1.4
PubMed Abstracts	4.4	2.9	1.8
Wikipedia	4.2	4.8	3.2
Gutenberg (PG-19)	2.7	0.9	0.9
BookCorpus2	1.5	1.0	1.8
NIH ExPorter	0.3	0.2	1.8
ArXiv	20.8	1.4	0.2
GitHub	24.3	1.6	0.2
Pile-CC	49.8	9.4	0.5
CC-2020-50	68.7	13.0	0.5
CC-2021-04	82.6	15.7	0.5
Realnews	21.9	9.0	1.1
CC-Stories	5.3	0.9	0.5



PaLM Chowdhery et al, 2022

- PaLM is a 540B parameter (yes, you guessed it) transformer decoder
- Training set: 780B tokens; training: one full epoch!

Model	Layers	# of Heads	$d_{ m model}$	# of Parameters (in billions)	Batch Size
PaLM 8B	32	16	4096	8.63	$256 \rightarrow 512$
PaLM 62B	64	32	8192	62.50	$512 \rightarrow 1024$
PaLM 540B	118	48	18432	540.35	$512 \rightarrow 1024 \rightarrow 2048$

Total dataset

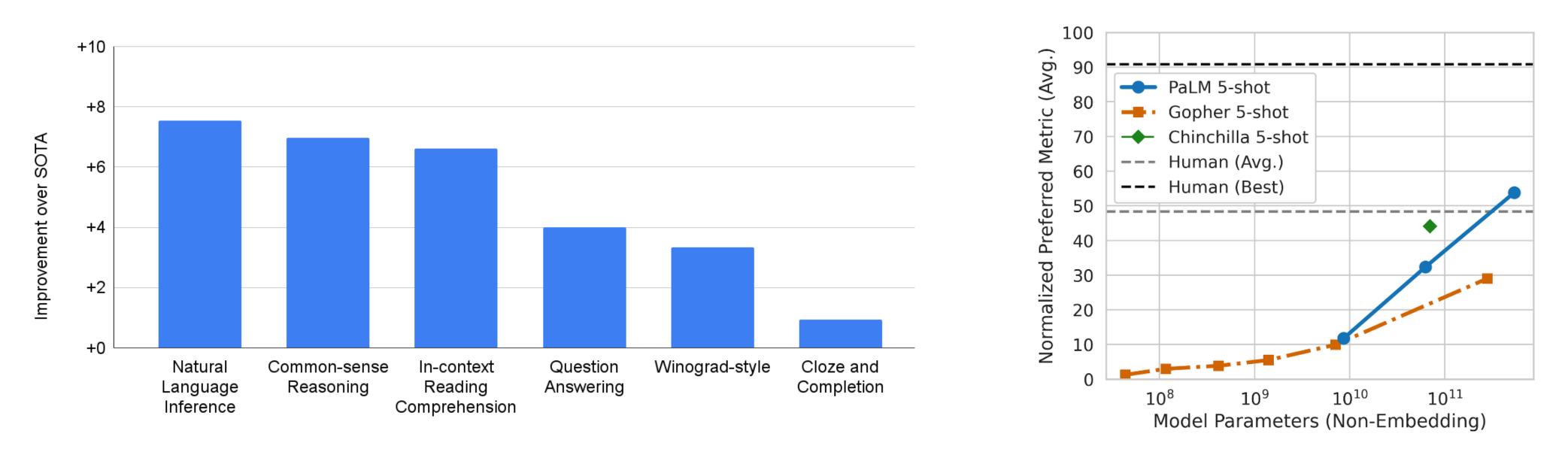
Data source

Social media conversation Filtered webpages (multili Books (English) GitHub (code) Wikipedia (multilingual) News (English)

size = 780 billion tokens					
	Proportion of data				
ns (multilingual)	50%				
lingual)	27%				
	13%				
	5%				
	4%				
	1%				

PaLM Chowdhery et al, 2022

designed for evaluating large language models



• PaLM improves across a number of natural language tasks, including the recently proposed **BIG-Bench** (right), a recently proposed benchmark of >200 tasks

Applications of massive models

Few-shot learning via prompting

- - Often, the number of examples is less than 10
- **Prompt engineering** is now an important part of getting large models to perform their best, and this often requires some fiddling to get right

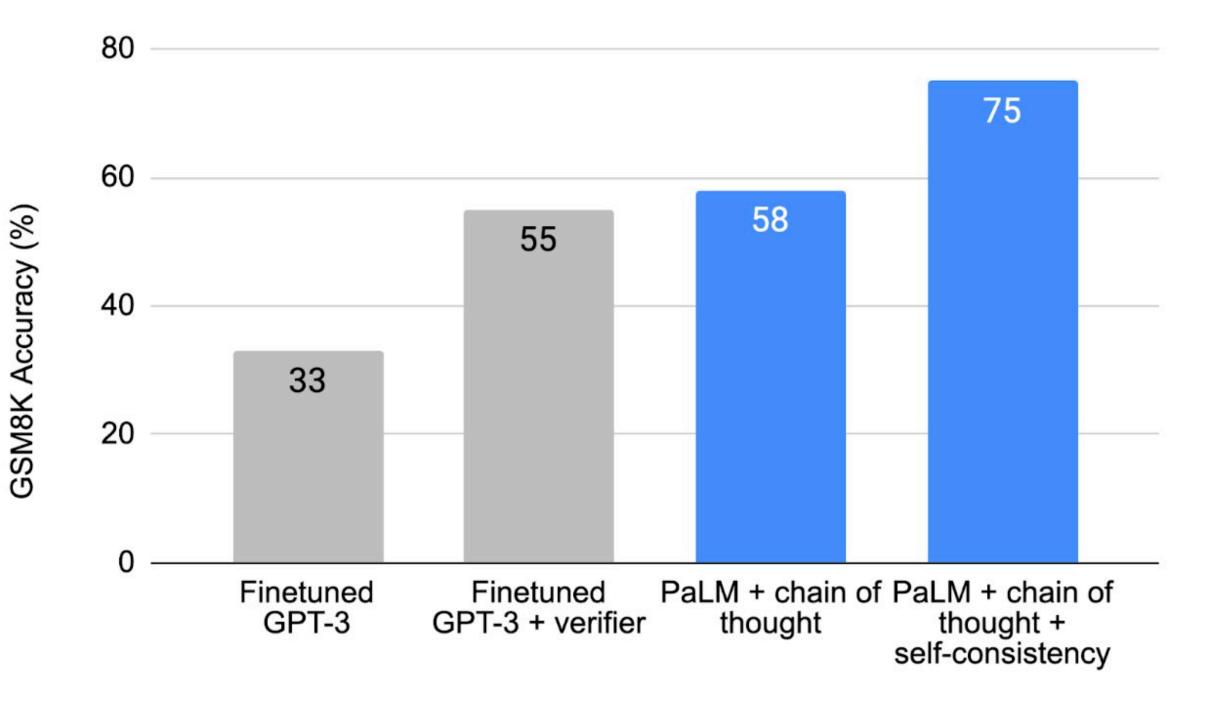
• GPT-3's prompting strategy has also been adopted by other large models: provide some number of examples of the task within the model's input itself

• PaLM sometimes uses chain-of-thought prompting, which not only prompts with the correct answer but also the process by which that answer is reached

This significantly improves performance for some more complex tasks

PaLM + chain-of-thought + self-consistency

improvements on eighth grade arithmetic word problems (GSM8K)



 Further combined with self-consistency (sampling multiple answers and picking the most consistent answer), PaLM + chain-of-thought results in substantial

PaLM can explain jokes with chain-of-thought prompting

Explaining a joke

Prompt

Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for their TPU team? It showed them how to communicate between two different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses for deep learning. A "pod" is a group of TPUs. A "pod" is also a group of whales. The joke is that the whale is able to communicate between two groups of whales, but the speaker is pretending that the whale is able to communicate between two groups of TPUs.

"Medium-shot" learning with fine tuning

- **Fine tuning** usually refers to updating the model via gradient based optimization with a small dataset (hundreds or thousands of data points)
- With the size of these models, even this can be impractical or even infeasible
 - GPT-3 offers fine tuning as part of the OpenAI API
- When possible, fine tuning still outperforms prompting significantly

Model	BoolQ	CB	CoPA	MultiRC	Record	RTE	WiC	WSC
Few-shot Finetuned	$\begin{array}{c} 89.1\\92.2\end{array}$	$89.3 \\ 100/100$	$\begin{array}{c} 95 \\ 100 \end{array}$	/	92.9/- 94.0/94.6			$\begin{array}{c} 89.5 \\ 100 \end{array}$

Table 7: Results on SuperGLUE dev set comparing PaLM-540B few-shot and finetuned.



Specializing to code: Codex and AlphaCode

- tunes on 159GB of code from Github
- AlphaCode scales up capabilities to competition level coding, achieving performance comparable to the median competitor
- Scaling up model size (41B) and dataset size (715GB), changing the model sampling/filtering many candidate solutions all help in scaling to this level

Codex is a 12B parameter model that starts from a (smaller) GPT-3 and fine

• This model is what powers Github Copilot: https://copilot.github.com/

architecture to be an encoder-decoder, fine tuning on competition code, and

Limitations of (current) massive models

Challenge tasks

- A number of tasks still elude the largest models and may be beyond the reach of simply making the models even bigger
 - Challenge sets designed to "stress test" models, e.g., ANLI, still have significant room for improvement, and scaling up is making slow progress
 - Hard tasks, such as generating solutions for high school math competition problems, also have very low accuracy even for the largest models
- This is even after these models are trained / fine tuned with more text/code/math than a human will ever see in their lifetime, so it seems like something is missing

Potential harms and biases

- Papers about large models now typically come with a *model card* describing its details and intended uses, along with some analysis about potential harms
- For example, GPT-3 was analyzed for gender, race, and religion biases, and this shed light on its predispositions that (unfortunately) seem in line with its training
 - This analysis has also been carried out for the three other models mentioned
- Analysis on Gopher (and, to an extent, PaLM) demonstrates that large models, when given a *toxic* prompt, are more likely to generate toxic continuations
- These concerns, and more, have to be carefully studied and mitigated before deploying such models into sensitive applications

Summary

- Massive models represent another potential paradigm shift within machine learning: pretraining + fine tuning was one such shift over the last ~10 years, but now perhaps we don't even need to do fine tuning anymore!
- In some ways, this may be more accessible (fewer data/expertise requirements); in other ways, this may be less accessible (compute requirements, privatization)
- Massive models still have problems in which they struggle, and they are primarily language models at the moment, but this may all change over the next few years
- As these models continue to proliferate, careful auditing of the potential benefits vs. potential harms will be needed to truly understand their full impact