
2022/04/06

Lecture 19:
Deep generative models
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• Today’s lecture will be a crash course on deep generative models

• Next lecture will be a crash course on self-supervised learning

• Want a full course on these? Check out the Deep Unsupervised Learning
course (much of these slides’ content are borrowed from there)

• Deep generative models attempt to understand data (using deep networks) in a
label-free way, specifically through density/distribution modeling

• We will blaze through a number of different applications of generative models,
along with different types of models that are suitable for these applications

2

Density/distribution modeling
Some potential motivations

• Why might we be interested in trying to model the data distribution?

• Generation: synthesize new data points that are useful/interesting/pretty

• Conditional generation: synthesize specific data points of interest

• Density modeling: understand/analyze the likelihood of various data points

• Doesn’t work that well OOD, at least not yet, but still could be useful…

• Representation learning (or compression, or dimensionality reduction, etc.):
convert high dimensional data into lower dimensional representations

3

Have we already seen some generative models?

• Yes we have!

4

Generating new data

• In NLP, autoregressive models like GPT reign when it comes to generation

• Masked autoencoders are capable of generating images, but they are far from
state-of-the-art and that is not their primary function

• For computer vision, the leading approaches for generation are generative
adversarial networks (GANs) and, recently, diffusion/score-based models

• For audio, the leading approach is also autoregressive modeling

• We will briefly cover all of these types of models and more

5

Generative adversarial networks

• The GAN framework defines optimization as a game between two competitors: a
generator that is synthesizing data from noise inputs, and a discriminator
which is trying to distinguish real data from synthesized data

• We saw discriminators in domain adaptation, though that probably came after

• Theory: optimal under Bayes optimal recreates the data distribution

• After training: throw away , use to generate new samples

G D

G⋆ D⋆

D G

6

• Many works have contributed to making GANs work better; roughly in order:
DCGAN, Improved Training of GANs, WGAN(-GP), Progressive GAN, SN-GAN,
SAGAN, BigGAN

• Better architectures, modified objectives, bags of tricks, scaling up (of course)

Generating images with GANs
https://twitter.com/goodfellow_ian/status/1084973596236144640

7

https://twitter.com/goodfellow_ian/status/1084973596236144640

Conditional generation with GANs

• There are a number of ways to condition the generator in order to “guide” the
data that it produces

• If class information is available, we can directly pass in the label to both and

• Even without class information, including a “label-like” (uniform categorical)
input can allow to do unsupervised discovery of different categories

• Here, additional objectives may further help, such as maximizing the mutual
information between the generator output and the “label-like” input (InfoGAN)

• What else can we condition on?

G D

G

8

Unsupervised image-to-image translation

• Another success story of GANs is translating images from one domain (e.g.,
pictures of horses) into corresponding images of another domain (e.g., zebras)

• Most well known is CycleGAN, which trains two image-to-image generators that
turns images from one domain into images of the other domain

• And, correspondingly, two discriminators (one for each domain)

9

https://www.youtube.com/watch?v=9reHvktowLY

GANs summary

• GANs are the go-to model for image generation

• Other types of models are catching up in terms of generated quality, however,
they currently have other downsides such as being much slower to generate

• However, GANs are not density models, and there is not really a way to obtain
probability estimates of data points from a GAN

• Consequently, this makes GANs harder to evaluate as well — how can we say
whether one GAN is better than another GAN (or some other model)?

• Metrics for evaluating GANs usually rely on inputting generated images into a
pretrained classifier (e.g., Inception and FID scores), but this is contentious

10

Density models on images

• If we care about more than just image generation, we may be better off trying to
learn a density model

• It may sometimes (but, as we have discussed, certainly not always) be useful
for detecting anomalous s

• At the very least, this type of model prescribes a clear approach for both
training (MLE) and evaluation (better held out likelihood means better model)

• There are at least three main classes of deep generative models that allow for
estimating — autoregressive, latent variable, and flow-based models

pθ(x)

x

pθ(x)

11

Autoregressive models

• Conceptually, autoregressive models are the simplest type: we just factorize the
density according to the chain rule

• may naturally be sequential (e.g., audio), or we can define such an ordering

• The key question is then how to define the model such that we get

• Think back to how we did this with the transformer decoder — masking

• We can do the same for images, e.g., masked convolutions (PixelCNN(++)) and
masked self-attention (PixelSNAIL, Image Transformer, Sparse Transformer)

pθ(x) = ∏
d

i=1
pθ(xi |x<i)

x
pθ(xi |x<i)

12

Aside: defining a distribution over pixels

• What distribution is for image pixels and how do we parameterize it?

• One simple option is to make it a 256-dim Categorical (softmax) distribution

• But this is rather expensive and doesn’t capture useful inductive biases, e.g.,
nearby values are closer than far away values

• One effective approach is to use a mixture of (truncated) logistic distributions

• Other simpler options can also sometimes work, e.g., if we treat pixels as
continuous values in [0, 1], we can use Beta, Kumaraswamy, or (my favorite)
Logit-Normal distributions

pθ(xi |x<i)

13

Generating from autoregressive models
Figures originally by Aaron van den Oord

14

Autoregressive models summary

• Autoregressive models offer “best in class” modeling performance, oftentimes both
qualitatively in terms of generation and quantitatively in terms of likelihood metrics

• This is true beyond images — there are very good autoregressive models for language
(we already knew this) and audio (e.g., a somewhat dated example is WaveNet)

• Similar to GANs, we can modify autoregressive models to do conditional generation

• GANs are still superior when it comes to image generation

• Generating from autoregressive models is also very slow, comparatively speaking

• Lastly, autoregressive models do not naturally provide a notion of a latent space, so they
are not used for representation learning

15

Representation learning

• What deep generative models might be useful for representation learning?

• The model should have a notion of a latent representation that is perhaps
lower dimensional or otherwise “simpler” than

• Autoregressive models did not have this; GANs did

• The model ideally would have an encoder that maps to

• GANs did not have this, though a variant called BiGAN does

• Bonus: modeling as probabilistic could be useful for some applications

z
x

x z

z
16

Latent variable models, the formalism

• Let’s start by treating both and as probabilistic and see what happens

• We directly model , which is the prior (e.g., unit Gaussian) and ,
which is the observation model (or generator, generative model, decoder, …)

• The likelihood of a data point is — totally intractable

• We are interested in the distribution , which is also intractable…

• Idea: what if we model with another distribution ?

x z
p(z) pθ(x |z)

pθ(x) = ∫ pθ(x |z)p(z)dz

pθ(z |x)
pθ(z |x) qϕ(z; x)

17

The evidence lower bound (ELBO)

18

fix y
z lx

Duc ga Il Po Ego Iloggo z x logpo z x

IEg Iloggo z x logpo x z t logPo x

IEg t logpo x z loggplz x logplz logpolx

IEg logPo x z Dal all Pz logpo x
O evidencelowerboundh

Variational autoencoders (VAEs)

• In VAEs, both the observation model and recognition model (also
called encoder) are trained to maximize the evidence lower bound —
this is an example of the variational inference (VI) framework

• Intuitively, the ELBO contains a reconstruction term and a regularization term

• After training, we may elect to keep around both models

• provides a natural approach for generating representations of new data points

• , combined with the prior, allows us to synthesize new data points

pθ(x |z)
qϕ(z; x)

qϕ

pθ

19

An aside: other types of autoencoders

• There are other types of deep autoencoders (paired encoders and decoders) that
we won’t cover: denoising autoencoders, bottleneck autoencoders, …

• These are not used much anymore compared to VAEs

• We have seen the masked autoencoder previously and studied its strengths

• So far, masked autoencoders have primarily been used for representation
learning, and their reconstructions are quite poor

• Generation from masked autoencoders (and other types of autoencoders) is
also non obvious, as there is no prior distribution on the latent variable

20

VAEs summary

• VAEs provide natural mechanisms for both representation learning and generation

• Though estimating is difficult, a lower bound can easily be obtained

• However, there is typically a tradeoff involved between representation learning and
generation quality

• The VAEs which synthesize the best data points and result in the best (lower
bounds of) likelihoods utilize complex priors and modeling choices, e.g.,
quantization and multiple levels of latent variables

• This can make extracting useful representations more difficult

pθ(x)

21

Briefly: flow models

• Another important class of deep generative models is flow models, which parameterize
an invertible transformation between and

• Consequently, has to be the same dimensionality as , but it can be defined to follow
a much simpler distribution, e.g., independent unit Gaussians

• Exact likelihood computations can be done by transforming to and following the
change of variables formula for continuous random variables

• Sampling is also straightforward: sample and transform it into

• The problem of how to define effective invertible transformations is an area of much
active research

x z
z x

x z

z x

22

Briefly: energy-based models (EBMs)

• EBMs parameterize an energy function and define the likelihood as

, where

• Math exercise (if you want):

• Sampling from (both for estimating the above gradient and generation after training) are
typically done by Markov chain Monte Carlo (MCMC) techniques — MCMC and VI together
comprise the two main “workhorses” of approximate probabilistic inference

• EBMs are primarily appealing due to their similarities to the discriminative model “interface”

• However, it is difficult to obtain density estimates from EBMs, and they are rather hard to train

eθ(x)
pθ(x) = exp{−eθ(x)}

Zθ
Zθ = ∫ exp{−eθ(x′)}dx′

∇θlog pθ(x) = − ∇θ eθ(x) + %pθ
[∇θ eθ(X)]

pθ

23

Briefly: diffusion models

• Diffusion models define a process by which is transformed, little by little, via
additive Gaussian noise, into , which is pure noise

• This is similar in spirit to flow models, but we do not require invertibility

• Diffusion models parameterize the reverse process (to), and the forward
process (to) is fixed as incrementally adding small amounts of noise

• Similar to VAEs, we then train by maximizing the evidence lower bound

• Diffusion models generate impressive samples, however, sampling is expensive

x
z

z x
x z

24

Briefly: score-based models

• Score-based models parameterize the score function

• Training is done via score matching: roughly, making close to

• Recently, a powerful “multi-step” score-based model was proposed which models a
process by which images are gradually corrupted via noise — sound familiar?

• There are deep connections between this model and diffusion models

• Different views of the same model type can lead to new strengths, e.g., this model
allows for straightforward exact likelihood computation rather than just a lower bound

• However, some weaknesses are shared, such as the inefficiency of sample generation

sθ(x) = ∇xlog pθ(x)
sθ(x) ∇xlog p(x)

25

