Lecture 18: Adversarial examples CS 182/282A ("Deep Learning")

2022/04/04

Today's lecture

- Today, we wrap up our discussion on robustness and distribution shift
- We will start by going over **test time adaptation**, which asks the question: can the model change at test time after seeing the test data to handle the shift?
- Then, we will switch gears and talk about adversarial robustness
- This differs from what we have covered previously because the distribution shift is no longer a natural consequence of the real world being complicated
 - Instead, we now have an **adversary** that is purposely trying to manipulate the data to harm our model, and we will see that this is a rather challenging problem

Test time adaptation

- An alternative, and potentially complementary, approach to handling shift is to **adapt** the model at test time, using the available information
- In other words, assume that we have access to and can change the model's parameters, or we have other means of augmenting the model's predictions
- Many test time adaptation approaches assume that multiple test points are available, from which we may be able to estimate statistics of the underlying test distribution
- E.g., when there is **label shift** (only p(y) changes), a principled approach is to adapt the classifier's threshold for predicting various classes (Lipton et al, ICML 2018)

Methods for test time adaptation

BN adaptation (image from Nado et al, '20)

"standard" model: $g: \mathcal{X} \to \mathcal{Y}$ adaptive model: $f: \mathscr{X} \times \mathscr{P}_{\mathbf{x}} \to \mathscr{Y}$ in practice, approximate $\mathscr{P}_{\mathbf{x}}$ with $(\mathbf{x}_1, \dots, \mathbf{x}_K)$ Self-supervised learning via:

Adversarial robustness

Imperceptible adversarial distortions An older example

- neural network to make a mistake

"cat"

• The adversarial distortion is optimized to cause the (undefended, off-the-shelf)

Now, models can be trained (defended) against such imperceptible distortions

"guacamole"

Modern adversarial distortions

- human eye, yet the underlying class is unchanged
- but they are still not robust to perceptible distortions

• Here, the adversary makes changes to the image that are *perceptible* to the

Modern neural network models can be made robust to imperceptible distortions,

Review: ℓ_1 -norm

$\|\mathbf{v}\|_1 = |v_1| + |v_2| + \dots + |v_d|$

```
l1 = 0
# RGB image is a perturbation p of size 3x224x224
for c in range(3):
    for y in range(224):
        for x in range(224):
            l1 += abs(p[c,y,x])
```


Review: ℓ_2 -norm

$$\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_d^2}$$

```
l2 = 0
# RGB image is a perturbation p of size 3x224x224
for c in range(3):
    for y in range(224):
        for x in range(224):
            l2 += square(p[c,y,x])
```

l2 = sqrt(l2)

Review: ℓ_{∞} -norm

$\|\mathbf{v}\|_{\infty} = \max\{|v_1|, |v_2|, ..., |v_d|\}$

```
linf = 0
# RGB image is a perturbation p of size 3x224x224
for c in range(3):
    for y in range(224):
        for x in range(224):
            linf = max(linf, abs(p[c,y,x]))
```


Fooling a binary logistic regression model

Suppose our model is $f_{\theta}(\mathbf{x}) = \frac{\exp \theta^{\mathsf{T}} \mathbf{x}}{\exp \theta^{\mathsf{T}} \mathbf{x} + 1}$

Input	x	2	-1	3	-2	2	2	1	-4	5	1
Weight	θ	-1	-1	1	-1	1	-1	1	1	-1	1
$\theta^{T}\mathbf{x} = -3$						$f_{\Delta}($	\mathbf{X}	\approx	0.0)5	

Input	x	2	-1	3	-2	2	2	1	-4	5	1
Adv Input	Χ+ ε	1.5	-1.5	3.5	-2.5	1.5	1.5	1.5	-3.5	4.5	1.5
Weight	θ	-1	-1	1	-1	1	-1	1	1	-1	1

 $\theta^{\mathsf{T}}(\mathbf{x}+\epsilon) = 2 \quad \|\epsilon\|_{\infty} = 0.5 \quad f_{\theta}(\mathbf{x}+\epsilon) \approx 0.88$

Logistic regression takeaways

Input	x	2	-1	3	-2	2	2	1	-4	5	1
Adv Input	Χ+ ε	1.5	-1.5	3.5	-2.5	1.5	1.5	1.5	-3.5	4.5	1.5
Weight	θ	-1	-1	1	-1	1	-1	1	1	-1	1

$\theta^{\mathsf{T}}(\mathbf{x} + \epsilon) = 2 \quad \|\epsilon\|_{\infty} = 0.5 \quad f_{\theta}(\mathbf{x} + \epsilon) \approx 0.88$

- The cumulative effect of many small changes made the adversary powerful enough to change the classification decision
- Adversarial examples exist for non deep learning (even linear) models

An adversary threat model

- A simple threat model is to assume the adversary has an ℓ_p attack distortion budget ϵ , i.e., for some assumed p and ϵ , $\|\mathbf{x}_{adv} \mathbf{x}\|_p \leq \epsilon$
- Not all distortions have a small ℓ_p norm, e.g., rotations this simplistic threat model is common because it is a more tractable subproblem
- The adversary's goal is usually to find a distortion δ that maximizes the loss subject to its budget: $\mathbf{x}_{adv} = \mathbf{x} + \arg \max_{\delta: \|\delta\|_p \le \epsilon} \ell(\theta; \mathbf{x} + \delta, y)$

Fast gradient sign method (FGSM)

- How do we generate adversarial examples algorithmically?
- A simple attack is the **FGSM** attack: $\mathbf{x}_{FGSM} = \mathbf{x} + \epsilon \operatorname{sign}(\nabla_{\mathbf{x}} \ell(\theta; \mathbf{x}, y))$
- model's loss, obeying an ℓ_{∞} attack budget $\|\mathbf{x}_{FGSM} \mathbf{x}\|_{\infty} = \epsilon$
- This attack is easy to defend against nowadays more on that in a bit

This attack performs a single step of gradient ascent on the input to increase the

• The attack is called "fast" because it only uses a single gradient ascent step

Projected gradient descent (PGD)

- The **PGD** attack uses multiple gradient ascent steps and thus is far more powerful than the FGSM attack
- Pseudocode for a PGD attack with T steps and an ℓ_{∞} attack budget ϵ : Randomly initialize a perturbed image for more diverse attacks: $\tilde{\mathbf{x}} = \mathbf{x} + n$, where $n_i \sim \mathcal{U}[-\epsilon, \epsilon]$, and initialize $\delta = 0$ For t = 1, ..., T: $\delta \leftarrow clip(\delta + \alpha sign(\nabla_{\delta} \ell(\theta; \tilde{\mathbf{x}} + \delta, y)), -\epsilon, \epsilon)$ Finally: $\mathbf{x}_{PGD} = \tilde{\mathbf{x}} + \delta$

Adversarial training (AT)

- A common AT procedure is as follows: Sample minibatch $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(B)}, y^{(B)})$ from the training set Create $\mathbf{x}_{\text{PGD}}^{(i)}$ (e.g., $\mathbf{x}_{\text{PGD}}^{(i)}$) from $\mathbf{x}^{(i)}$ for all i

Optimize the average training loss on these adversarial training examples

• This does come with some downsides: currently, AT can reduce accuracy on non adversarial ("clean") examples by 10%+

• The best way (we know of) to robustify models to ℓ_p attacks is **adversarial training (AT)**

Untargeted vs. targeted attacks

 $\delta : \|\delta\|_p \leq \epsilon$

- predetermined target \tilde{y}
- similar classes

"labrador retriever"

"golden retriever"

• So far we have assumed **untargeted** attacks which just try to maximize the loss By contrast, a **targeted** attack optimizes examples to be misclassified as a

Targeted attack evaluation is standard for ImageNet because there are many

"great white shark"

The adversarial "arms race"

- This leads to an "arms race" that defenders lose
- Proper and thorough evaluation of defenses is very difficult (look up "On Evaluating Adversarial Robustness")
- Most proposed defenses are broken within weeks of being proposed

Transferability of attacks

- many different models
- results in a high loss for $M_2(\mathbf{x}_{adv})$, even if M_2 is a different architecture
- Consequently, an attacker does not always need access to a model's parameters or architectural information in order to try and attack it

• An adversarial example crafted for one model can potentially be used to attack

• Given neural network models M_1 and M_2 , \mathbf{x}_{adv} designed for M_1 sometimes also

• Transfer rates can vary greatly, but even moderate amounts of transferability demonstrate that adversarial failure modes are somewhat shared across models

Transferability to the real world

- noise (e.g., printer imperfections) and sensor noise (e.g., from cameras)
- E.g., for a model that has not undergone adversarial training, testing

(a) Image from dataset

(b) Clean image

Adversarial examples can sometimes even withstand real-world instantiation

susceptibility to an adversarial example that is printed and photographed:

(c) Adv. image, $\epsilon = 4$ (d) Adv. image, $\epsilon = 8$

Using larger and more diverse data ... again

- Adversarial robustness scales slowly (similar to clean accuracy) with dataset size
- Adversarial pretraining on a larger training set has been shown to help
- E.g., to increase CIFAR-100 adversarial robustness, one can first adversarially pretrain on ImageNet and obtain some robustness benefits

Normal Training Adversarial Training Adv. Pre-Training and Tuning

CI	FAR-10	CIFAR-100				
lean	Adversarial	Clean	Adversarial			
96.0	0.0	81.0	0.0			
37.3	45.8	59.1	24.3			
37.1	57.4	59.2	33.5			

Data augmentation ... again

- E.g., an effective data augmentation technique, combined with adversarial training and a parameter exponential moving average, is CutMix

Models can also squeeze more out of the existing data using data augmentation

Choice of activation functions

- optimizer, smooth activations such as GELUs improve adversarial training

Model	ImageNet Adversarial Accuracy
ResNet-50 with ReLUs	26.41%
ResNet-50 with GELUs	35.51%

Sharp activation functions such as ReLUs make adversarial training less effective

• By improving gradient quality for both the adversarial attacker and the network

Unforeseen adversaries

- In practice, attackers could use unforeseen or novel attacks whose specifications are not known during training
- Models are far less robust to attacks they have not trained against, even if they have trained against other attacks
- To estimate robustness to unforeseen attacks, we should measure robustness to multiple attacks not encountered during training

Defense

-rained

Defense Robustness Under Different Attacks 7 17 22 0 31 16 10 5 None -42 15 14 49 20 37 55 L_∞ - L_2 – 80 88 79 67 48 18 38 53 L_1 - 62 71 89 56 43 18 31 47 JPEG - 65 70 54 92 40 19 31 52 Adversarially Elastic - 23 25 11 1 91 25 40 41 8 0 28 91 43 54 3 Fog -15 9 39 37 93 60 13 Snow -Gabor - 12 19 14 0 39 29 40 82 Gabor

Adversarial Attack

Summary

- Adversarial examples present a challenging form of distribution shift: harmful by definition and continuously evolving against our best defenses
- In high dimensions, adversaries have much greater flexibility in terms of the space of possible subtle changes to the input that can degrade the model
- It's not a little bug that needs a little patch much more work and evaluation are required to understand how to build stronger, more robust models
- Currently, our best defenses are adversarial training against attacks we may expect and rigorous evaluation against potential unforeseen attacks