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Lecture 18: Adversarial examples
CS 182/282A (“Deep Learning”)
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Today’s lecture

• Today, we wrap up our discussion on robustness and distribution shift 

• We will start by going over test time adaptation, which asks the question: can 
the model change at test time after seeing the test data to handle the shift? 

• Then, we will switch gears and talk about adversarial robustness 

• This differs from what we have covered previously because the distribution shift is 
no longer a natural consequence of the real world being complicated 

• Instead, we now have an adversary that is purposely trying to manipulate the 
data to harm our model, and we will see that this is a rather challenging problem
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Test time adaptation

• An alternative, and potentially complementary, approach to handling shift is to adapt 
the model at test time, using the available information 

• In other words, assume that we have access to and can change the model’s 
parameters, or we have other means of augmenting the model’s predictions 

• Many test time adaptation approaches assume that multiple test points are available, 
from which we may be able to estimate statistics of the underlying test distribution 

• E.g., when there is label shift (only  changes), a principled approach is to adapt 
the classifier’s threshold for predicting various classes (Lipton et al, ICML 2018)

p(y)
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Methods for test time adaptation

“standard” model:  

adaptive model:   

in practice, approximate  with 

g : 𝒳 → 𝒴

f : 𝒳 × 𝒫x → 𝒴

𝒫x (x1, …, xK)
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BN adaptation (image from Nado et al, ’20) rotation prediction (Sun et al, ICML ’20) entropy minimization (Wang et al, ICLR ’21)

Self-supervised learning via:

ImageNet-C



Adversarial robustness
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Imperceptible adversarial distortions
An older example

• The adversarial distortion is optimized to cause the (undefended, off-the-shelf) 
neural network to make a mistake 

• Now, models can be trained (defended) against such imperceptible distortions
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Modern adversarial distortions

• Here, the adversary makes changes to the image that are perceptible to the 
human eye, yet the underlying class is unchanged 

• Modern neural network models can be made robust to imperceptible distortions, 
but they are still not robust to perceptible distortions
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Review: -normℓ1

∥v∥1 = |v1 | + |v2 | + … + |vd |
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Review: -normℓ2

∥v∥2 = v2
1 + v2

2 + … + v2
d
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Review: -normℓ∞

∥v∥∞ = max{ |v1 | , |v2 | , …, |vd |}
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Fooling a binary logistic regression model

Suppose our model is  fθ(x) =
exp θ⊤x

exp θ⊤x + 1
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Input x 2 -1 3 -2 2 2 1 -4 5 1

Adv Input x+𝜀 1.5 -1.5 3.5 -2.5 1.5 1.5 1.5 -3.5 4.5 1.5

Weight -1 -1 1 -1 1 -1 1 1 -1 1θ

Input x 2 -1 3 -2 2 2 1 -4 5 1

Weight -1 -1 1 -1 1 -1 1 1 -1 1θ

θ⊤x = − 3 fθ(x) ≈ 0.05

θ⊤(x + ϵ) = 2 fθ(x + ϵ) ≈ 0.88∥ϵ∥∞ = 0.5



Logistic regression takeaways

• The cumulative effect of many small changes made the adversary powerful 
enough to change the classification decision 

• Adversarial examples exist for non deep learning (even linear) models
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Input x 2 -1 3 -2 2 2 1 -4 5 1

Adv Input x+𝜀 1.5 -1.5 3.5 -2.5 1.5 1.5 1.5 -3.5 4.5 1.5

Weight -1 -1 1 -1 1 -1 1 1 -1 1θ

θ⊤(x + ϵ) = 2 fθ(x + ϵ) ≈ 0.88∥ϵ∥∞ = 0.5



An adversary threat model

• A simple threat model is to assume the adversary has an  attack distortion 
budget , i.e., for some assumed  and ,  

• Not all distortions have a small  norm, e.g., rotations — this simplistic threat 
model is common because it is a more tractable subproblem 

• The adversary’s goal is usually to find a distortion  that maximizes the loss 
subject to its budget: 

ℓp
ϵ p ϵ ∥xadv − x∥p ≤ ϵ

ℓp

δ
xadv = x + arg max

δ:∥δ∥p≤ϵ
ℓ(θ; x + δ, y)
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Fast gradient sign method (FGSM)

• How do we generate adversarial examples algorithmically? 

• A simple attack is the FGSM attack:  

• This attack performs a single step of gradient ascent on the input to increase the 
model’s loss, obeying an  attack budget  

• The attack is called “fast” because it only uses a single gradient ascent step 

• This attack is easy to defend against nowadays — more on that in a bit

xFGSM = x + ϵsign(∇xℓ(θ; x, y))

ℓ∞ ∥xFGSM − x∥∞ = ϵ
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Projected gradient descent (PGD)

• The PGD attack uses multiple gradient ascent steps and thus is far more 
powerful than the FGSM attack 

• Pseudocode for a PGD attack with  steps and an  attack budget : 

Randomly initialize a perturbed image for more diverse attacks: 
, and initialize  

For :   

Finally: 

T ℓ∞ ϵ

x̃ = x + n,  where ni ∼ 𝒰[−ϵ, ϵ] δ = 0

t = 1,…, T δ ← clip(δ + α sign(∇δℓ(θ; x̃ + δ, y)), − ϵ, ϵ)

xPGD = x̃ + δ
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Adversarial training (AT)

• The best way (we know of) to robustify models to  attacks is adversarial training (AT) 

• A common AT procedure is as follows: 

Sample minibatch  from the training set 

Create  (e.g., ) from  for all  

Optimize the average training loss on these adversarial training examples 

• This does come with some downsides: currently, AT can reduce accuracy on non 
adversarial (“clean”) examples by 10%+

ℓp

(x(1), y(1)), …, (x(B), y(B))

x(i)
adv x(i)

PGD x(i) i
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Untargeted vs. targeted attacks

• So far we have assumed untargeted attacks which just try to maximize the loss 

• By contrast, a targeted attack optimizes examples to be misclassified as a 
predetermined target  

• Targeted attack evaluation is standard for ImageNet because there are many 
similar classes

ỹ

17

“golden retriever”

untargeted

arg max
δ:∥δ∥p≤ϵ

ℓ(θ; x + δ, y)

“labrador retriever”

targeted
arg min

δ:∥δ∥p≤ϵ
ℓ(θ; x + δ, ỹ)

“great white shark”



The adversarial “arms race”

• Typically, newly proposed defenses are evaluated narrowly (non comprehensively) 

• This leads to an “arms race” that defenders lose 

• Proper and thorough evaluation of 
defenses is very difficult (look up 
“On Evaluating Adversarial Robustness”) 

• Most proposed defenses are broken 
within weeks of being proposed
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Transferability of attacks

• An adversarial example crafted for one model can potentially be used to attack 
many different models 

• Given neural network models  and ,  designed for  sometimes also 
results in a high loss for , even if  is a different architecture 

• Transfer rates can vary greatly, but even moderate amounts of transferability 
demonstrate that adversarial failure modes are somewhat shared across models 

• Consequently, an attacker does not always need access to a model’s 
parameters or architectural information in order to try and attack it

M1 M2 xadv M1
M2(xadv) M2
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Transferability to the real world

• Adversarial examples can sometimes even withstand real-world instantiation 
noise (e.g., printer imperfections) and sensor noise (e.g., from cameras) 

• E.g., for a model that has not undergone adversarial training, testing 
susceptibility to an adversarial example that is printed and photographed:
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Using larger and more diverse data
… again

• Adversarial robustness scales slowly (similar to clean accuracy) with dataset size 

• Adversarial pretraining on a larger training set has been shown to help 

• E.g., to increase CIFAR-100 adversarial robustness, one can first adversarially 
pretrain on ImageNet and obtain some robustness benefits
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Data augmentation
… again

• Models can also squeeze more out of the existing data using data augmentation 

• E.g., an effective data augmentation technique, combined with adversarial 
training and a parameter exponential moving average, is CutMix
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Original         Mixup          Cutout          CutMix



Choice of activation functions

• Sharp activation functions such as ReLUs make adversarial training less effective 

• By improving gradient quality for both the adversarial attacker and the network 
optimizer, smooth activations such as GELUs improve adversarial training
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Model ImageNet Adversarial Accuracy
ResNet-50 with ReLUs 26.41%
ResNet-50 with GELUs 35.51%



Unforeseen adversaries

• In practice, attackers could use unforeseen or 
novel attacks whose specifications are not 
known during training 

• Models are far less robust to attacks they have 
not trained against, even if they have trained 
against other attacks 

• To estimate robustness to unforeseen attacks, 
we should measure robustness to multiple 
attacks not encountered during training
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Summary

• Adversarial examples present a challenging form of distribution shift: harmful by 
definition and continuously evolving against our best defenses 

• In high dimensions, adversaries have much greater flexibility in terms of the 
space of possible subtle changes to the input that can degrade the model 

• It’s not a little bug that needs a little patch — much more work and evaluation are 
required to understand how to build stronger, more robust models 

• Currently, our best defenses are adversarial training against attacks we may 
expect and rigorous evaluation against potential unforeseen attacks
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