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loday'’s lecture

e [oday, we wrap up our discussion on robustness and distribution shift

e \We will start by going over test time adaptation, which asks the question: can
the model change at test time after seeing the test data to handle the shift?

* [hen, we will switch gears and talk about adversarial robustness

e [his differs from what we have covered previously because the distrioution shift IS
No longer a natural consegquence of the real world being complicated

e |nstead, we now have an adversary that is purposely trying to manipulate the
data to harm our model, and we will see that this is a rather challenging problem




lest time adaptation

* An alternative, and potentially complementary, approach to handling shift is to adapt
the model at test time, using the available information

* |n other words, assume that we have access to and can change the model’s
parameters, or we have other means of augmenting the model's predictions

* Many test time adaptation approaches assume that multiple test points are available,
from which we may be able to estimate statistics of the underlying test distribution

e E.g., when there is label shift (only p(y) changes), a principled approach is to adapt
the classifier’s threshold for predicting various classes (Lipton et al, ICML 2018)



Methods for test time adaptation

Self-supervised learning via:
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(b) fully test-time adaptation

BN adaptation (image from Nado et al, '20)

rotation prediction (Sun et al, ICML '20) entropy minimization (Wang et al, ICLR ’'21)
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Adversarial robustness



Imperceptible adversarial distortions

An older example

e The adversarial distortion is optimized to cause the (undefended, off-the-shelf)
neural network to make a mistake

e Now, models can be trained (defended) against such imperceptible distortions

“guacamole”



Modern adversarial distortions

* Here, the adversary makes changes to the image that are perceptible to the
human eye, yet the underlying class is unchanged

e Modern neural network models can be made robust to Imperceptible distortions,
but they are still not robust to perceptible distortions




Review: £;-norm

|vlly = v+ [v] +...+ v,

11 =090
# RCB image is a perturbation p of size 3x224x224
for ¢ in range(3):
for y in range(224):
for x in range(224):
11 += abs(plc,y,x])




Review: £,-norm

VI, =+/vi+ vy + ... + V]

12 =0
# RCB image is a perturbation p of size 3x224x224
for ¢ in range(3):
for y in range(224):
for x in range(224):
12 += square(p[c,y,x])

12 = sqrt(12)




Review: £ __-norm

HVHOO=maX{‘V1‘,‘V2|,...,‘Vd‘}

linf = ©
# RCB image is a perturbation p of size 3x224x224
for ¢ in range(3):
for y in range(224):
for x in range(224):
linf = max(linf, abs(p[c,y,x]))
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~ooling a binary logistic regression model

T 1
| exp ' x T
SuppOSeOurmOde\ISf(g(X)=— =
expl'x + 1 — ENEEE
Input X 2 -1 3 -2 2 2 1 -4 ) 1
Weight | & -1 -1 1 -1 1 -1 1 1 -1 1

0'x = —3 fo(x) = 0.05

Input X 2 -1 3 -2 2 2 1 -4 5 1
Adv Input | x+¢ | 1.5 | -1.5 | 3.5 | 25 1.5 1.5 1.5 | -3.5 | 4.5 1.5

Weight 0 -1 1 1 -1 1 -1 1 1 -1 1

O'x+e)=2 Jlell, =05 fix+¢€)~0.88
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L ogistic regression takeaways
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O'(x+e)=2 Jell, =05 fy(x+¢)~0.88

 [he cumulative effect of many small changes made the adversary powerful
enough to change the classification decision

e Adversarial examples exist for non deep learning (even linear) models
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An adversary threat model

o A simple threat model is to assume the adversary has an ¢ b attack distortion
budget €, i.e., for some assumed p and €, |[Xaqy — X||, < €

« Not all distortions have a small £ », norm, e.g., rotations — this simplistic threat
Model IS common because it IS a more tractable subproblem

e The adversary’s goal is usually to find a distortion 0 that maximizes the loss

subject to its budget: X,qy = X + arg max £(0;x+ 0,y)
5:1161l,<e
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Fast gradient sign method (FGSM)

e How do we generate adversarial examples algorithmically’?

o A simple attack is the FGSM attack: Xpagnm = X + esign( V,£(0; X, y))

e [his attack performs a single step of gradient ascent on the input to iIncrease the
model’s loss, obeying an ¢, attack budget ||[XFegm — Xl = €

e [he attack is called “fast” because it only uses a single gradient ascent step

e [his attack is easy to defend against nowadays — more on that in a bit
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Projected gradient descent (PGD)

* The PGD attack uses multiple gradient ascent steps and thus is far more
oowerful than the FGSM attack

 Pseudocode for a PGD attack with T steps and an £ attack budget e:

Randomly initialize a perturbed image for more diverse attacks:
X = X+ n, where n. ~ %|—e¢, €], and initialize 6 = 0

Fort=1,...,T: 6 « clip(0 + asign(Vs£(0; X+ 0,y)), — €, €)

Finally: Xpgp = X + 0
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Adversarial training (AT)

e The best way (we know of) to robustify models to £ b attacks is adversarial training (AT)
e A common Al procedure Is as follows:
Sample minibatch (x, y), .., (x®), y®)) from the training set

() () () °
Create Xadv (e.q., XDGD) from X for all 1

Optimize the average training loss on these adversarial training examples

e [his does come with some downsides: currently, AT can reduce accuracy on non
adversarial (“clean”) examples by 10%+
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Untargeted vs. targeted attacks

e SO far we have assumed untargeted attacks which just try to maximize the loss

e By contrast, a targeted attack optimizes examples to be misclassified as a
predetermined target y

e [argeted attack evaluation is standard for ImageNet because there are many
similar classes

untargeted targeted

4 ">
arg max Z(0;X+6,y) arg min £(0;X +9,Y)
5:115]] <€

“labrador retriever” “golden retriever” “great white shark”
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The adversarial “arms race”

e [ypically, newly proposed defenses are evaluated narrowly (hon comprehensively)

e [his |leads to an “arms race” that defenders lose

discovery
[Szegedy et al. '14]

e Proper and thorough evaluation of
defenses is very difficult (look up
“On Evaluating Adversarial Robustness”)

adversarial training
[Goodfellow et al. '15]

defensive distillation
|[Papernot et al. "15]

. _ - e o o (1004 papers)
Iiterative attacks A A A A A A A A A

[Carlini & Wagner '16] _
bypassing 10 defenses
[Carlini & Wagner '17]

—

transfer attacks | & U

-

 Most proposed defenses are broken
within weeks of being proposed

|[Papernot et al. '17] @
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Transferabllity of attacks

e An adversarial example crafted for one model can potentially be used to attack
many different models

 Given neural network models M, and M,, X, 4, designed for M; sometimes also
results in a high loss for M,(X,4y), even if M, is a different architecture

e [ransfer rates can vary greatly, but even moderate amounts of transferability
demonstrate that adversarial fallure modes are somewhat shared across models

e Consequently, an attacker does not always need access to a model’s
parameters or architectural information in order to try and attack it
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ITransterapility to the real world

e Adversarial examples can sometimes even withstand real-world instantiation
noise (e.q., printer imperfections) and sensor noise (e.g., from cameras)

e E.g., for a model that has not undergone adversarial training, testing
susceptibility to an adversarial example that is printed and photographed:

(a) Image from dataset (b) Clean image (c) Adv. image, € = 4 (d) Adv. image, € = 8
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Using larger and more diverse data

... again

e Adversarial robustness scales slowly (similar to clean accuracy) with dataset size
e Adversarial pretraining on a larger training set has been shown to help

e E.0., to increase CIFAR-100 adversarial robustness, one can first adversarially
pretrain on ImageNet and obtain some robustness benefits

CIFAR-10 CIFAR-100
Clean Adversarial Clean Adversarial
Normal Training 96.0 0.0 81.0 0.0
Adversarial Training 87.3 45.8 59.1 24.3

Adv. Pre-Training and Tuning  87.1 57.4 59.2 33.5
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Data augmentation

... again

* Models can also squeeze more out of the existing data using data augmentation

e £.g0., an effective data augmentation technique, combined with adversarial
training and a parameter exponential moving average, is CutMix
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Choice of activation functions

e Sharp activation functions such as RelLUs make adversarial training less effective

By improving gradient quality for both the adversarial attacker and the network
optimizer, smooth activations such as GELUs improve adversarial training

Nonlinearities

231 — RelU
Model ImageNet Adversarial Accuracy —— GELU

2.0 -
ResNet-50 with RelLUs 26.41%
ResNet-50 with GELUs 35.51%

1.5 -

1.0 A

0.5 -

0.0 -
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Unforeseen adversaries

| Defense Robustness Under Different Attacks
* In practice, attackers could use unforeseen or . B

novel attacks whose specifications are not

. T L - 42 15 14
Known during training

e Models are far less robust to attacks they have
not trained against, even if they have trained
against other attacks

JPEG
Elastic

Fog

Adversarially Trained Defense

e [0 estimate robustness to unforeseen attacks, Snow
we should measure robustness to multiple Gabor
attacks not encountered during training

Adversarial Attack

24



Summary

e Adversarial examples present a challenging form of distribution shift: harmftul by
definition and continuously evolving against our best defenses

* |In high dimensions, adversaries have much greater flexibility in terms of the
space of possible subtle changes to the input that can degrade the model

e |t's not a little bug that needs a little patch — much more work and evaluation are
required to understand how to build stronger, more robust models

o Currently, our best defenses are adversarial training against attacks we may
expect and rigorous evaluation against potential unforeseen attacks
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