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loday'’s lecture

e [oday, we continue our discussion on distribution shift

* \We first make a brief detour to talk about calibration, a concept related to the
general reliability and trustworthiness of models but not tied to distribution shift

* Then, we will venture deeper into studying frameworks for handling shift:
domain adaptation, distributional robustness, and domain generalization

e tach framework makes different assumptions about the available training data,
and they each have types of problems for which they work well

e Finally, we will also discuss the concept of test time adaptation



Model calibration

e A concept related to the general reliability of machine learning models, but not
strictly tied to distribution shift, is model calibration

e E£.g., consider a weather model that predicts “70% chance of rain” for a certain
set of inputs — does it rain for 70% of those inputs?
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e \Well calibrated models are more trustworthy,
easler to integrate, and more interpretable
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Recall: neural network ensembles

e |f you have enough compute, training multiple neural networks Is often useful

e Same concept as bagging for other machine learning models — an ensemble of
models reduces variance and combats overfitting

e [urns out, also very good at uncertainty quantification and calibration

* [0 get the confidence of the ensemble, simply average together the softmax
probabillities of each individual model and return the highest probability

pensemble y ‘ ZE sz Y | CE



For a single model: temperature scaling

* Models can be made more calibrated after training by adding a softmax temperature

py=i o) = o)

Zj:l exp(l;/T)

o [ is typically tuned to maximize log likelihood on a validation set after training

e As T — 00, the probabilities become uniform, and as T' — 0, they “spike”

e Note that adding 1" cannot change the predictions of the model! Only its overall
calibration as measured by its confidence (maximum predicted probabillity)




Calibration under distribution shift
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Frameworks for handling distribution snift



| everaging additional training information

porimarily by either scaling up or utilizing domain knowledge

Last time, we saw several approaches for robustitying against distribution shift,

e E.9., data augmentations or well-designed unsupervised objectives for images

 [hese problems motivate a different approach: making explic

we assume access to, and devising methods that leverage tr

It wh

IS IN

What about problems where we do not have lots of data or domain knowledge”

at iInformation

‘ormation

Let’s start by looking at different assumptions on the available training information



Domain adaptation

e \What if we knew at training time which test distribution we want to do well on”

* |n this case, shouldn’t we just train with the test distribution”?

e [he issue Is that data from the test distribution may be difficult to collect

e S0, the assumption (as typically stated) made by domain adaptation is that we
have abundant training data from a source domain and only a small amount of
training data from the target domain which is the actual domain of interest

e E.g., source vs. target could be simulation vs. the real world

e Or, e.q., the overall population vs. an underrepresented group of interest
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Importance weignting

e A classic approach to domain adaptation is to estimate importance weights for
the source training data

Ptarget(X; ¥) 1 ZN Ptarget(X;» ¥;)

et £(0: X, V)] = E cO:X.Y)| r— ),
arge SOUrce PsourceX, Y) N =1 psource(Xi» i)

f(@, Xi9 yl)

o We can estimate Pgoyrce @Nd Ptarget USING the training data from the source anc
target domains, respectively

e |n unsupervised domain adaptation, we only get Xs from the target domain —
in this case, we assume only covariate shift, i.e., pigrqet(V [ X) = Psource(y | X)
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Deep learning and domain adaptation

e |mportance weighting is easy to understand and principled, so why not use it”?

e In practice, estimating Pigrget @Nd Psource are generally too ditficult for the types
of problems we study, so we obtain poorly behaved importance weights

e For deep learning, we will have better luck trying to instead devise methods that
work In the space of learned features

e Since we are learning the features, we can define different criterion that we
expect the learned features to satisty — one common criterion IS Invariance
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INnvariant feature learning

e At a high level, invariance in this context (usually) means that we wish for the
feature distributions between the source and target data to look identical

o [ntuitively, If the model is outputting similar features for both source and target
data and predicting well for source data, we may expect that it will also predict
well on target data

e A few approaches have been proposed for invariant feature learning: trying to
fool learned domain discriminators and matching distribution statistics between
the source and target data

e \We will review these approaches at a high level, read papers for details if you like
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Other approaches to invariance

e Rather than learning a discriminator that tries to tell apar

- source and target

features, we can instead directly try to make the feature distributions similar

e For example, correlation alignment (CORAL) includes a loss term that
encourages the covariance matrices of the two feature distributions to match

e Further, we can consider other types of invariance besides feature invariance

e For example, invariant risk minimization (IRM) tries to learn feature
representations for different domains such that the optimal classitier on top of

these features Is the same across domains

e [hough, In practice, solving this optimization problem can e rather tricky...
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Recal: WIL®DS

https://wilds.stanford.edu
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https://wilds.stanford.edu

Subpopulation shift

* |n subpopulation shift, we assume several training domains rather than just two

e Domains are also referred to as “groups” or “subpopulations” in this context

 [he key challenge in subpopulation shift is that some domains are
underrepresented Iin the training data

* However, those domains may contribute significantly to the model's generalization

performance, either because they will be equally represented in the test
distribution, or because we care about fairness across domains

* |n the latter case, it Is natural to measure weighted or worst-case performance
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Distributional (group) robustness

e Distributional robustness, in general, aims to train a model against an adversary that can
change the data distribution to try and make the model worse

* |n group robustness, the adversary is only allowed to change the distribution of domains

D
Letting p, be the probability of domain 7, we have: min max - pEANC(O; X, Y)]
0 pi....sPp =

e Rebalancing the training data (by upsampling rare domains or downsampling common
domains) turns out to be very effective at improving the worst-case performance

e Thisis also a common and effective trick for handling class imbalance

e \We can sometimes further improve performance by weighting the loss function as well
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Domain generalization

e Similar to subpopulation shift, domain generalization assumes several
domains are provided at training time

e However, we typically do not assume that there is a domain imbalance issue that
we must combat, e.g., via robustness

* |nstead, we assume that we will be given new domains at test time, and our goal
IS tO generalize to these new domains

e Sometimes, this problem setting is referred to as zero-shot domain adaptation or
multi-source domain adaptation
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Comparing frameworks

e Domain adaptation, subpopulation shift, and domain generalization make
different assumptions about the training information and the expected test shift

e However, they are all driven by the idea of distribution shifts being defined In
terms of domains, rather than allowing for arbitrary shifts

e As such, it is also possible, to an extent, to “share” methods across frameworks

e £.g., many common methods for domain generalization were either first
poroposed for domain adaptation or inspired by domain adaptation methods

 And, group robustness methods can also be used for domain generalization
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Domain generalization benchmarks
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Characterizing real-world distribution shifts

Problem settings and frameworks

train distribution .

test distribution

E”ﬁ‘p.'”?a' '.”Sk Domain adaptation Subpopulation shift Domain generalization
minimization
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Do these frameworks buy us anything’

Algorithm CMNIST RMNIST VLCS PACS OfficeHome Terralnc DomainNet Average
ERM 515+£0.1 980+£00 775+04 855+4+02 665+03 46.1+18 409 +0.1 66.6
IRM 520+0.1 977+0.1 785+05 835+08 643+22 47608 339+28 65.4
GroupDRO 52.14+0.0 980+£00 76.7+06 844+08 66007 432+1.1 333402 64.8
Mixup 521 4+0.2 980+0.1 774+06 846+06 68.1+-03 479+08 39.2+0.1 66.7
MLDG 515+£0.1 979+00 772+04 849+10 668+06 47709 41.2+0.1 66.7
CORAL 515401 980+0.1 788+06 86.2+03 68.7+03 476+10 41.5+0.1 67.5
MMD 515402 979+£00 775+£09 846+05 663+0.1 422+16 234+95 63.3
DANN 515+£03 978+0.1 786+04 836+04 659+06 46.7+05 383+0.1 66.1
CDANN 51.7+0.1 979+01 775+01 826+09 658+13 458+16 383+03 65.6
MTL 514+0.1 979+00 772+04 846+05 664+05 456+12 406=+0.1 66.2
SagNet 51.7+00 980+£00 778+05 863+02 68.1+0.1 486+10 403+0.1 67.2
ARM 56.2+02 982+01 776+03 851+04 64803 455+03 355+0.2 66.1
VREXx 518+0.1 979+0.1 783+02 849+06 664+06 46406 33.6+29 65.6
RSC 51702 97601 77.14+05 852+4+09 655+09 46610 389+0.5 66.1

Model selection: training-domain validation set

Gulrajani and Lopez-Paz, ICLR 2021
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lest time adaptation

* An alternative, and potentially complementary, approach to handling shift is to adapt
the model at test time, using the available information

* |n other words, assume that we have access to and can change the model’s
parameters, or we have other means of augmenting the model's predictions

* Many test time adaptation approaches assume that multiple test points are available,
from which we may be able to estimate statistics of the underlying test distribution

e E.g., when there is label shift (only p(y) changes), a principled approach is to adapt
the classifier’s threshold for predicting various classes (Lipton et al, ICML 2018)
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Methods for test time adaptation

Self-supervised learning via:
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Summary

* Model calibration is an important concern even when there is no distribution shift,

but It Is made more difficult in the presence of shift

* A number of frameworks exist for characterizing and devising methods for handling

shift, each makin

g different assumptions about the type of shift

* [heir assumptions are all related to the core idea of having domain information

e However, It Is not yet perfectly established what we gain from methods derived
under these assumptions compared to well-tuned ERM, in practice

e Jest time adapta
when facing chal

loN IS another promising approach that may allow for greater gains

enging shifts, particularly when combined with other approaches
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