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Lecture 17: 
Robustness, invariance, and adaptation
CS 182/282A (“Deep Learning”)
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Today’s lecture

• Today, we continue our discussion on distribution shift 

• We first make a brief detour to talk about calibration, a concept related to the 
general reliability and trustworthiness of models but not tied to distribution shift 

• Then, we will venture deeper into studying frameworks for handling shift:  
domain adaptation, distributional robustness, and domain generalization 

• Each framework makes different assumptions about the available training data, 
and they each have types of problems for which they work well 

• Finally, we will also discuss the concept of test time adaptation
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Model calibration

• A concept related to the general reliability of machine learning models, but not 
strictly tied to distribution shift, is model calibration 

• E.g., consider a weather model that predicts “70% chance of rain” for a certain 
set of inputs — does it rain for 70% of those inputs? 

• We measure calibration by comparing the model’s 
confidence against its accuracy 

• Well calibrated models are more trustworthy, 
easier to integrate, and more interpretable
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Recall: neural network ensembles

• If you have enough compute, training multiple neural networks is often useful 

• Same concept as bagging for other machine learning models — an ensemble of 
models reduces variance and combats overfitting 

• Turns out, also very good at uncertainty quantification and calibration 

• To get the confidence of the ensemble, simply average together the softmax 
probabilities of each individual model and return the highest probability
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For a single model: temperature scaling

• Models can be made more calibrated after training by adding a softmax temperature 

•  is typically tuned to maximize log likelihood on a validation set after training 

• As , the probabilities become uniform, and as , they “spike” 

• Note that adding  cannot change the predictions of the model! Only its overall 
calibration as measured by its confidence (maximum predicted probability)

T

T → ∞ T → 0

T
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Calibration under distribution shift
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Frameworks for handling distribution shift
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Leveraging additional training information

• Last time, we saw several approaches for robustifying against distribution shift, 
primarily by either scaling up or utilizing domain knowledge 

• E.g., data augmentations or well-designed unsupervised objectives for images 

• What about problems where we do not have lots of data or domain knowledge? 

• These problems motivate a different approach: making explicit what information 
we assume access to, and devising methods that leverage this information 

• Let’s start by looking at different assumptions on the available training information
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Domain adaptation

• What if we knew at training time which test distribution we want to do well on? 

• In this case, shouldn’t we just train with the test distribution? 

• The issue is that data from the test distribution may be difficult to collect 

• So, the assumption (as typically stated) made by domain adaptation is that we 
have abundant training data from a source domain and only a small amount of 
training data from the target domain which is the actual domain of interest 

• E.g., source vs. target could be simulation vs. the real world 

• Or, e.g., the overall population vs. an underrepresented group of interest
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Importance weighting

• A classic approach to domain adaptation is to estimate importance weights for 
the source training data 

 

• We can estimate  and  using the training data from the source and 
target domains, respectively 

• In unsupervised domain adaptation, we only get s from the target domain — 
in this case, we assume only covariate shift, i.e., 

𝔼target[ℓ(θ; X, Y)] = 𝔼source [
ptarget(X, Y)
psource(X, Y)

ℓ(θ; X, Y)] ≈
1
N ∑

N

i=1

ptarget(xi, yi)
psource(xi, yi)

ℓ(θ; xi, yi)

psource ptarget

x
ptarget(y |x) = psource(y |x)
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Deep learning and domain adaptation

• Importance weighting is easy to understand and principled, so why not use it? 

• In practice, estimating  and  are generally too difficult for the types 
of problems we study, so we obtain poorly behaved importance weights 

• For deep learning, we will have better luck trying to instead devise methods that 
work in the space of learned features 

• Since we are learning the features, we can define different criterion that we 
expect the learned features to satisfy — one common criterion is invariance

ptarget psource
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Invariant feature learning

• At a high level, invariance in this context (usually) means that we wish for the 
feature distributions between the source and target data to look identical 

• Intuitively, if the model is outputting similar features for both source and target 
data and predicting well for source data, we may expect that it will also predict 
well on target data 

• A few approaches have been proposed for invariant feature learning: trying to 
fool learned domain discriminators and matching distribution statistics between 
the source and target data 

• We will review these approaches at a high level, read papers for details if you like
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Fooling learned discriminators
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Ganin and Lempitsky, ICML 2015



Other approaches to invariance

• Rather than learning a discriminator that tries to tell apart source and target 
features, we can instead directly try to make the feature distributions similar 

• For example, correlation alignment (CORAL) includes a loss term that 
encourages the covariance matrices of the two feature distributions to match 

• Further, we can consider other types of invariance besides feature invariance 

• For example, invariant risk minimization (IRM) tries to learn feature 
representations for different domains such that the optimal classifier on top of 
these features is the same across domains 

• Though, in practice, solving this optimization problem can be rather tricky…
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Recall: 
https://wilds.stanford.edu
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domain generalization subpop. 
shift hybrid

https://wilds.stanford.edu


Subpopulation shift

• In subpopulation shift, we assume several training domains rather than just two 

• Domains are also referred to as “groups” or “subpopulations” in this context 

• The key challenge in subpopulation shift is that some domains are 
underrepresented in the training data 

• However, those domains may contribute significantly to the model’s generalization 
performance, either because they will be equally represented in the test 
distribution, or because we care about fairness across domains 

• In the latter case, it is natural to measure weighted or worst-case performance
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Distributional (group) robustness

• Distributional robustness, in general, aims to train a model against an adversary that can 
change the data distribution to try and make the model worse 

• In group robustness, the adversary is only allowed to change the distribution of domains 

• Letting  be the probability of domain , we have:  

• Rebalancing the training data (by upsampling rare domains or downsampling common 
domains) turns out to be very effective at improving the worst-case performance 

• This is also a common and effective trick for handling class imbalance 

• We can sometimes further improve performance by weighting the loss function as well

pi i min
θ

max
p1,…,pD

∑
D

d=1
pd𝔼d[ℓ(θ; X, Y)]
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Domain generalization

• Similar to subpopulation shift, domain generalization assumes several 
domains are provided at training time 

• However, we typically do not assume that there is a domain imbalance issue that 
we must combat, e.g., via robustness 

• Instead, we assume that we will be given new domains at test time, and our goal 
is to generalize to these new domains 

• Sometimes, this problem setting is referred to as zero-shot domain adaptation or 
multi-source domain adaptation
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Comparing frameworks

• Domain adaptation, subpopulation shift, and domain generalization make 
different assumptions about the training information and the expected test shift 

• However, they are all driven by the idea of distribution shifts being defined in 
terms of domains, rather than allowing for arbitrary shifts 

• As such, it is also possible, to an extent, to “share” methods across frameworks 

• E.g., many common methods for domain generalization were either first 
proposed for domain adaptation or inspired by domain adaptation methods 

• And, group robustness methods can also be used for domain generalization
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Domain generalization benchmarks
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(images from) Gulrajani and Lopez-Paz, ICLR 2021



Characterizing real-world distribution shifts
Problem settings and frameworks
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train distribution

test distribution

Empirical risk 
minimization Domain adaptation Subpopulation shift Domain generalization



Do these frameworks buy us anything?
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Gulrajani and Lopez-Paz, ICLR 2021



Test time adaptation

• An alternative, and potentially complementary, approach to handling shift is to adapt 
the model at test time, using the available information 

• In other words, assume that we have access to and can change the model’s 
parameters, or we have other means of augmenting the model’s predictions 

• Many test time adaptation approaches assume that multiple test points are available, 
from which we may be able to estimate statistics of the underlying test distribution 

• E.g., when there is label shift (only  changes), a principled approach is to adapt 
the classifier’s threshold for predicting various classes (Lipton et al, ICML 2018)

p(y)
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Methods for test time adaptation

“standard” model:  

adaptive model:   

in practice, approximate  with 

g : 𝒳 → 𝒴

f : 𝒳 × 𝒫x → 𝒴

𝒫x (x1, …, xK)
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BN adaptation (image from Nado et al, ’20) rotation prediction (Sun et al, ICML ’20) entropy minimization (Wang et al, ICLR ’21)

Self-supervised learning via:

ImageNet-C



Summary

• Model calibration is an important concern even when there is no distribution shift, 
but it is made more difficult in the presence of shift 

• A number of frameworks exist for characterizing and devising methods for handling 
shift, each making different assumptions about the type of shift 

• Their assumptions are all related to the core idea of having domain information 

• However, it is not yet perfectly established what we gain from methods derived 
under these assumptions compared to well-tuned ERM, in practice 

• Test time adaptation is another promising approach that may allow for greater gains 
when facing challenging shifts, particularly when combined with other approaches
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