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Lecture 16: Distribution shift
CS 182 (“Deep Learning”)
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Today’s lecture

• This week, we focus on the general problem setting of distribution shift: when 
the test data comes from a different distribution than the training data


• The real world is full of distribution shift; often it is benign, sometimes it is harmful


• When models encounter harmful shifts, not only may their performance/accuracy 
become worse, but they may also exhibit other types of degradations


• E.g., worse calibration, worse fairness, …


• Most of the examples we will use are from computer vision (image classification 
in particular), but there are many other domains that are worthy of greater study
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Recall: true risk and empirical risk

• Risk is defined as expected loss: 


• This is sometimes called true risk to distinguish from empirical risk below


• Empirical risk is the average loss on the training set: 


• Supervised learning is oftentimes empirical risk minimization (ERM)


• Why (and when) does ERM make sense as a learning objective?

R(θ) = 𝔼[ℓ(θ; X, Y)]

R̂(θ) =
1
N

N

∑
i=1

ℓ(θ; xi, yi)

3



The ERM assumption

• ERM is based on the assumption that the test data distribution is the same as 
the training data distribution


• Under this assumption (and some others involving, e.g., regularization), we can 
derive generalization bounds of how well we expect models to generalize


• Even for deep neural networks! This is an active area of research


• This simplifying assumption is used by almost all supervised learning methods


• This assumption was also once referred to as “the big lie of machine learning” by 
Prof. Zoubin Ghahramani, Sr. Director of Google Brain
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Distribution shift in the real world
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SF Chronicle, 2020/09/09

• Distribution shift in the real world is not the exception, it’s the norm


• E.g.: in continuous deployment settings, your model will likely encounter future 
scenarios not represented in the training data


• E.g.: if your model interacts with end users, some users will likely be atypical and 
will challenge your model in unpredictable ways



Characterizing real-world distribution shift

6



Distribution shift benchmarks

• In designing benchmarks for distribution shift, we have multiple objectives


• We want benchmarks that are diverse and representative of real applications


• We also want benchmarks that are easy to use and evaluate on


• Let’s look at two general examples that prioritize these objectives somewhat 
differently: ImageNet challenge test sets and the  benchmark


• These examples are meant to be illustrative and representative, not exhaustive! 
Presenting an exhaustive list would take a very long time
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ImageNet challenge test sets

• ImageNet challenge test sets are a popular way to measure model robustness 
to different distribution shifts


• These test sets are designed to stress test models by simulating extreme or 
highly unusual events (stressors)


• These test sets contain the same classes as ImageNet (or a subset), therefore 
any model trained on ImageNet can easily be evaluated on these test sets


• And because so much deep learning research focuses on ImageNet, these 
test sets are widely used
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ImageNet challenge test sets
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ImageNet-C

ImageNet-R ImageNet-A Stylized ImageNet

ImageNet-Sketch



The  benchmark
https://wilds.stanford.edu

• Having easy to use and standardized challenge test sets is important


• But is it the full picture?


• Are they representative of the distribution shift problems faced by practitioners?


•  aims to curate a suite of problems that faithfully represent how 
distribution shift manifests in real world applications


• E.g., shifts resulting from medical images collected from a different hospital at 
test time, or shifts caused by deploying models into different countries
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https://wilds.stanford.edu


The  benchmark
https://wilds.stanford.edu
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https://wilds.stanford.edu


In NLP: the ANLI dataset
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• Natural language inference is the task of determining if a premise sentence and 
hypothesis sentence are related through contradiction, neutrality, or entailment


• The adversarial natural language inference (ANLI) dataset consists of 
crowdsourced hypotheses written to fool state-of-the-art models


• To construct the dataset: an annotator is asked to write a hypothesis given a 
premise and a condition (contradiction, neutrality, or entailment)


• If the model correctly predicts the condition, the annotator is asked to try again


• If the model predicts incorrectly, the hypothesis is verified by other annotators



Robustifying against distribution shift

13



Improving model robustness

• How do we actually make models more robust to distribution shift?


• For , the training datasets come with additional information (domains) 
which we can leverage — more on this next time


• For the ImageNet challenge test sets, the story is different — we do not get any 
additional information for training as part of the problem statement


• Here, some techniques have proved quite useful for improving robustness:


• Training larger models on larger, more diverse datasets (perhaps unsurprising)


• Using heavy data augmentations and alternative/additional training objectives
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Training larger models on larger datasets
Improves “robustness”?
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Data augmentations

• Mixup produces element-wise convex combinations of 
data points and improves corruption robustness


• AutoAugment learns complex augmentation strategies 
from basic data augmentation operations by training 
tens of thousands of deep neural networks


• AugMix mixes together random augmentations, using 
many of the same operations from AutoAugment


• PixMix is a recent strategy that mixes in a separate 
image dataset (such as fractals) and results in 
consistently good performance across several metrics
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Current state of the art: masked autoencoders

• The current state of the art numbers for ImageNet-C, R, A, and Sketch are 
obtained with ViT models pretrained with a masked autoencoding objective


• Supervised learning on the original ImageNet training set after this pretraining 
phase leads to the best results amongst models that do not get additional data
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Detecting distribution shift

18



Anomaly and out-of-distribution detection

• Why do we care about detecting anomalies and out-of-distribution (OOD) data?


• When machine learning systems encounter an anomaly, we may wish to trigger a 
“conservative” mode or failsafe in order to avoid catastrophes


• We may wish to detect malicious use of machine learning systems, e.g., hackers


• Or other potential dangers, e.g., dangerous novel microorganisms
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Anomaly detection: the basics

• We would like for our model to assign an anomaly score to every input  — the 
higher the score, the more anomalous the model thinks the example is


• An intuitive idea would be to try and learn a model of  (a generative model) 
and treat an  as anomalous if it has low  according to the model


• This currently does not work well! Modern deep generative models often still 
do poorly at anomaly detection using this scheme for complex input spaces


• There are some ways to make deep generative models useful for anomaly 
detection, though they are more complex and require additional assumptions

x

p(x)
x p(x)
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A simple baseline for anomaly detection

• A better approach that does not involve training a generative model is to use the model’s 
confidence  to detect anomalies


• Specifically, use  as the anomaly score


• In some contexts,  (negative of max logit) may work better


• This simple baseline works reliably across computer vision, NLP, and speech recognition 
classification tasks, though it can’t detect adversarial examples (next week)


• Some more advanced techniques we don’t have time to discuss, but you can go look up: 
likelihood ratios, outlier exposure, virtual logit matching

max
k

pθ(y = k |x)

− max
k

pθ(y = k |x)

− max
k

zk
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Benchmarks for anomaly detection

• In some sense, there is a much larger “search space” for constructing anomaly 
detection benchmarks — train a model on one dataset, and treat any other 
dataset as anomalous


• E.g., train on CIFAR-10, evaluate on SVHN (a digit recognition dataset)


• Or, train on CIFAR-10, evaluate on CIFAR-100; or vice versa


• The classes between these two datasets are mutually exclusive


• Or, train on ImageNet-22K, evaluate on Species
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An aside: evaluating binary classifiers

• We can think of anomaly detection as a binary classification problem


• What might be the issue of just evaluating the accuracy of anomaly detectors?


• What if we have 1 anomaly, 99 “normal” examples, and a detector that always 
predicts “usual”? What is its accuracy? Is this a good detector?


• Evaluating anomaly detectors, and binary classifiers in general, often consider 
more detailed metrics than just accuracy


• These metrics are generally based on the number of true positives, false 
positives, true negatives, and false negatives — (usually) covered in CS 189
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Model calibration

• Another concept related to the general reliability of machine learning models, but 
not tied to distribution shift, is model calibration


• E.g., consider a weather model that predicts “70% chance of rain” for a certain 
set of inputs — does it rain for 70% of those inputs?


• We measure calibration by comparing the model’s 
confidence against its accuracy


• Well calibrated models are more trustworthy, 
easier to integrate, and more interpretable
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Calibration under distribution shift
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