| ecture 10: Distribution shitt

CS 182 (“Deep Learning”)

2022/03/28



loday'’s lecture

* [his week, we focus on the general problem setting of distribution shift: when
the test data comes from a different distriobution than the training data

 [he real world Is full of distribution shift; often It iIs benign, sometimes it Is harmful

e \When models encounter harmful shifts, not only may their performance/accuracy
become worse, but they may also exhibit other types of degradations

e £.g., worse calibration, worse fairness, ...

e Most of the examples we will use are from computer vision (image classification
N particular), but there are many other domains that are worthy of greater study




Recall: true risk and empirical risk

e Risk is defined as expected loss: R(0) = E[£(0; X, Y)]

* [hisis sometimes called true risk to distinguish from empirical risk below

. |«
. Empirical risk is the average loss on the training set: R(0) = — 2 £(0;X.,y,)
Al i=1
e Supervised learning is oftentimes empirical risk minimization (ERM)

 \Why (and when) does ERM make sense as a learning objective”



1he ERM assumption

e ERM Is based on the assumption that the test data distribution is the same as
the training data distribution

e Under this assumption (and some others involving, e.qg., regularization), we can
derive generalization bounds of how well we expect models to generalize

e Even for deep neural networks! This is an active area of research
e [his simplifying assumption is used by almost all supervised learning methods

e [his assumption was also once referred to as “the big lie of machine learning” by
Prof. Zoubin Ghahramani, Sr. Director of Google Brain




Distribution shift in the real world

e Distribution shift in the real world Is not the exception, it’'s the norm

 £.g.:In continuous deployment settings, your model will likely encounter future
scenarios not represented In the training data

e E£.g.:If your model interacts with end users, some users will likely be atypical and
will challenge your model in unpredictable ways
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Characterizing real-world distribution shift



Distribution shift benchmarks

* |n designing benchmarks for distribution shift, we have multiple objectives
e \We want benchmarks that are diverse and representative of real applications
e \We also want benchmarks that are easy to use and evaluate on

e | et’'s ook at two general examples that prioritize these objectives somewhat
differently: ImageNet challenge test sets and the WIL®S benchmark

e [These examples are meant to be illustrative and representative, not exhaustive!
Presenting an exhaustive list would take a very long time




ImageNet challenge test sets

* |mageNet challenge test sets are a popular way to measure model robustness

(6

different distribution shifts

* [hese test sets are designed to stress test models by simulating extreme or
highly unusual events (stressors)

e [F

ese test sets contain the same classes as ImageNet (or a subset), therefore

dl’

y model trained on ImageNet can easily be evaluated on these test sets

 And because so much deep learning research focuses on ImageNet, these

test sets are widely used



ImageNet challenge test sets
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The WILI® S benchmark

https://wilds.stanford.edu

e Having easy to use and standardized challenge test sets is important
e But is it the full picture”
e Are they representative of the distribution shift problems faced by practitioners®

e WIL®S aims to curate a suite of problems that faithfully represent how
distribution shift manifests in real world applications

* E.g., shifts resulting from medical images collected from a different hospital at
test time, or shifts caused by deploying models into different countries
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https://wilds.stanford.edu

The WILI® S benchmark

https://wilds.stanford.edu

Train example

Test example

Adapted from 2018 2019 2020 2021

Domain (d)
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https://wilds.stanford.edu

N NLP: the ANL| dataset

o Natural language inference Is the task of determining If a premise sentence and
hypothesis sentence are related through contradiction, neutrality, or entailment

e The adversarial natural language inference (ANLI) dataset consists of
crowdsourced hypotheses written to fool state-of-the-art models

e [0 construct the dataset: an annotator is asked to write a hypothesis given a
premise and a condition (contradiction, neutrality, or entailment)

e |f the model correctly predicts the condition, the annotator is asked to try again

e [f the model predicts incorrectly, the hypothesis is verified by other annotators
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Robustitying against distribution shift



Improving model robustness

which we can leverage — more on this next time

e [For the ImageNet challenge test sets, the story is dif

How do we actually make models more robust to distribution shift’?

For WILI®S, the training datasets come with additional information (domains)

erent — we do not get any

additional information for training as part of the prob

e Here, some techniques have proved quite useful for

em Sstatement

improving robustness:

e [raining larger models on larger, more diverse datasets (perhaps unsurprising)

e Using heavy data augmentations and alternative/additional training objectives
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Iraining larger models on larger datasets

Improves “robustness”?

Pretrained Transformers Improve Out-of-Distribution Robustness Robustness properties of Facebook’s ResNeXt WSL
models
Dan Hendrycks'* Xiaoyuan Liu’?* Eric Wallace' Emin Orhan
Adam Dziedzic? Rishabh Krishnan' Dawn Song’ eod1@nyu. edu
'UC Berkeley Shanghai Jiao Tong University *University of Chicago New York University

{hendrycks,ericwallace,dawnsong} @berkeley.edu

Semantic Textual Similarity (STS-B) Generalization Table 4: Top-1 accuracy and confidence miscalibration scores on ImageNet-A. Note that lower RMS-CE

100 T 115 Data (images) and higher AURRA values indicate better calibrated models. On all three metrics, the largest WSL

g B 00D Data (MSRvid) model performs the best.
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% Model Top-1 acc. RMS-CE AURRA

2 60

% resnext101_32x8d 10.2 54.5 12.3

Lc’ 40 - resnext101_32x8d_wsl 45.4 26.8 66.3

3 . resnext101_32x16d_wsl 53.1 22.8 75.0

§ resnext101 32x32d_wsl 58.1 19.0 80.2
0- resnext101_32x48d_wsl 61.0 17.6 82.4

Avg. Avg. ConvNet LSTM BERT BERT RoOBERTa
BoW w2v w2v w2v Base Large
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Data augmentations

* Mixup produces element-wise convex combinations of
data points and improves corruption robustness

e AutoAugment learns complex augmentation strategies
from lbasic data augmentation operations by training
tens of thousands of deep neural networks

Equalize, 0.4,4  Solarize, 0.6,3  Posterize, 0.8, 5 Rotate, 0.2, 3 Equalize, 0.
0

o AUQMIX MIXEeS together random augmen':a’[igns, using e h s o 067 T 02 s ooy Pt
many of the same operations from AutoAugment =y

* PixMix is a recent strategy that mixes in a separate
image dataset (such as fractals) and results in
consistently good performance across several metrics
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Current state of the art: masked autoencoders

* The current state of the art numbers for ImageNet-C, R, A, and Sketch are
obtained with ViT models pretrained with a masked autoencoding objective

e Supervised learning on the original ImageNet training set after this pretraining
phase leads to the best results amongst models that do not get additional data

dataset ViT-B  ViT-L  ViT-H ViT-Hy4g prev best

;E; IN-Corruption | [27] 51.7 41.8 33.8 36.8 42.5 [32

M IN-Adversarial [28] 359 57.1 682 767  358[41
e IN-Rendition [26] 483  59.9 644 665 487 [41
target IN-Sketch [60] 345 453 496 509  36.0[41
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Detecting aistribution snift



Anomaly and out-of-distribution detection

 \Why do we care about detecting anomalies and out-of-distribution (OOD) data”

e \When machine learning systems encounter an anomaly, we may wish to trigger a
‘conservative”™ mode or failsafe in order to avoid catastrophes

* \We may wish to detect malicious use of machine learning systems, e.g., hackers

e Or other potential dangers, e.g., dangerous novel microorganisms
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Anomaly detection: the basics

e \\Ve wou

d like for our model to assign an anomaly score to every input X — the

higher the score, the more anomalous the model thinks the example is

* An intuitive idea would be to try and learn a model of p(X) (a generative model)
and treat an X as anomalous if it has low p(X) according to the model

e [his currently does not work welll Modern deep generative models often still
do poorly at anomaly detection using this scheme for complex input spaces

* [here are some ways to make deep generative models useful for anomaly

detection, though they are more complex and require additional assumptions
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A simple baseline for anomaly detection

e A better approach that does not involve training a generative model is to use the model’s

confidence max p,(y = k| X) to detect anomalies
k

. Specifically, use — max py(y = k| X) as the anomaly score
k

» N some contexts, — max z, (negative of max logit) may work better
k

* [his simple baseline works reliably across computer vision, NLP, and speech recognition
classification tasks, though it can’t detect adversarial examples (next week)

e Some more advanced technigues we don’t have time to discuss, but you can go look up:
likelihood ratios, outlier exposure, virtual logit matching
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Benchmarks for anomaly detection

* |n some sense, there iIs a much larger “search space” for constructing anomaly
detection benchmarks — train a model on one dataset, and treat any other

dataset as anomalous

e E.9., train on CIFAR-10, evaluate on SVHN (a digit recognition dataset)

In-Distribution

e Or, train on CIFAR-10, evaluate on CIFAR-100; or vice versa

Out-of-Distribution
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An aside: evaluating binary classifiers

* \We can think of anomaly detection as a binary classification problem

e \What might be the issue of just evaluating the accuracy of anomaly detectors”

e Whatr
poredic

“we have 1 anomaly, 99 “normal” examples, and a detector that always

'S “Us

ual™? Wr

at Is its accuracy? Is this a good detector”?

e Evaluating anomaly detectors, and binary classifiers in general, often consider
more detailed metrics than just accuracy

* [hese metrics are generally based on the number of true positives, false
positives, true negatives, and false negatives — (usually) covered in CS 189
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Model calibration

* Another concept related to the general reliability of machine learning models, but
not tied to distribution shift, is model calibration

e E£.g., consider a weather model that predicts “70% chance of rain” for a certain
set of inputs — does it rain for 70% of those inputs?

Less Calibrated More Calibrated

e \We measure calibration by comparing the model's  ,, _crar-100cssifer_ CIFAR-100 Classifer
confidence against its accuracy ([t ] =t

Gap | | Gap

e \Well calibrated models are more trustworthy,
easier to integrate, and more interpretable .

Accuracy

0.0
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Confidence
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Calibration under distribution shift
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