Transformers (1) & 3¢

2022/03/07
CS 182/282A Lecture 12

Today’s lecture

- This week, we will learn about the transformer neural network architecture
- Today: the setup and basics
- Next time (and next week as well): transformers in action
- This will be the last neural network architecture we cover
- There are some other interesting architectures, e.g., for graph data
- You should be able to learn new/other architectures pretty quickly now
- If you took CS 189 last semester, the slides this week may look pretty familiar
- In fact, they’re still in last semester’s format!
- Some new slides added in, but mostly it is last semester’s slide decks

Setup

features x label y

It was the best of
times, it was the worst
of times, it was the age

could correspond to...
- sentiment analysis,
translation to another language,

- audio transcription,
speaker identification,

- activity identification,
video captioning,

or there could be no label!
- sequential data - unsupervised learning /
- may be variable length generative modeling

model

Markov / n-gram models,
hidden Markov models
embedding / clustering based
methods
recurrent neural networks
(RNNSs)

- GRUs, LSTMs, ...
convolutions
transformers

Why transformers”?

- Massively influential in the last 4-5 years
- Outcompeting other deep architectures in a number of domains, e.g.,
RNNs in language modeling and convolutional networks in vision tasks
- Other state-of-the-art models, though not transformers, also use attention
- You might say they have been... transformative
- The backbone of models including BERT and GPT
- Dubbed by Stanford as “foundation models”: https://crfm.stanford.edu/
- Surprisingly not that hard to understand
- Once the right background knowledge is in place

https://crfm.stanford.edu/

Attention

Setup for attention

Originally formulated for tasks with sequential outputs

- E.g., translating from one language to another, captioning an image, ...

- The features may or may not be sequential

y1| =
“bird”
- . “flying”
X —>» model —_— : cover
7 _YT y ‘l‘\./;/ater”

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

Setup for attention

<start>
\/ 7 ;

model > - —> model
\/ ’ \J
‘(a”
y1 —/ Y
“flying”
“over”
The model generates the output “one step at a time” coater”
However, the model needs to know what is has generated so far

We can do this via autoregressive generation from an RNN, as we learned previously

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

Motivation / intuition

Swlwiwivl LER

A bird flying over a body of water .

A stop sign is on a road with a
mountain in the background.

o5

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

What do we attend over?

It depends on the task. Some examples:

- If the features are words, we can attend over them directly
- What if the features are pixels in an image”?

: . conv net I
X top layers

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

Attention: the details

- o s> model —p Y1 @
C1
\J
~ &, X - conv net : :
top layers X model > Yo bird
Cr, - e
“key-value-query” system: - T RN
S (model info) I (just the attention part, output generation not shown) \\\\\\\
¢ = ¢ from prev step -

k; = k(c;) 2

R T
ki—e12=k qz- T Q1,2
v, = v(c;) | | £ ay— E :041,2Vl
These functions are learned : — i N @ A
and can be, e.g., kL 6L72 kL a2 . aLa2 !

simple linear layers

10
Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

Self-attention: the building block of transformers

The goal of self-attention is to handle sequential features as the input

Think of it as a neural network layer that allows for processing the whole sequence

“key-value-query” system:

q: = q(x¢)
kt — k(Xt)
v = v(X¢)

These functions are learned
and can be, e.g.,
simple linear layers

q2

1 T
ki—e12=kiqa- a2

az = E Q¢ 2Vt
” t

Detail: scaled dot product attention

Divide each €¢ 2 by \/E

softmax

. . _|_
kr—er2 =Krqz - »aro

o
—
v
o
p—
v

self-attention
self-attention

v

\/
o ...
&

11

IE
~

Transformers

12

https://github.com/vinayprabhu/X-is-all-you-need

-

Aside: X is all you need

Convorurions Arrention MEPs
Patches ARe ALL You Neep? %

Anonymous authors
Paper under double-blind review

ABSTRACT

Although convolutional networks have been the dominant architecture for vision
tasks for many years, recent experiments have shown that Transformer-based mod-
els, most notably the Vision Transformer (ViT), may exceed their performance in

some settings. However, due to the quadratic runtime of the self-attention layers ‘
in Transformers, ViTs require the use of patch embeddings, which group together .

13

https://github.com/vinayprabhu/X-is-all-you-need

Transformers for “encoding” (representation learning)

X1 Z]
: transformer ;
encoder
| XT | e e ZT
| (1) ¢ (1) | (2) < (2) | N\ “representations”
X1 = hl s> a; " g* hl ST Qg = 21 “embeddings”
. . 5 .2 . 15 : s - “features”
b Q b =) . Q . = o e o o Q . >
X.T i § > h(l) % > a(.l) i § > h(2) % > (2) . § > Z.T used for tasks
. 4 ? S T ? aT . 7 “downstream”
feedforward layers are “position-wise”, i.e.,
14

not across time positions in the sequence!

https://nlp.seas.harvard.edu/2018/04/03/attention.html

Important detall: positional encoding

Typically after the first feedforward layer, a positional encoding is added to each hgl)

Without this, the model cannot distinguish between different permutations of the
same input sequence dimensionality of hgl)

Don’t stare at this too hgr{,but a common choice is to add:

T sin(t/10000%*1/4)
cos(t/100002*1/4)

sin(t/10000%*2/4)

cos(t/100002*2/4)

Pt

sin(t/100002*2/4)
cos(t/10000%*2/4) _

https://nlp.seas.harvard.edu/2018/04/03/attention.html

Important detall: positional encoding

This choice of positional encoding looks pretty strange, are there alternatives”?
What about just concatenating the time step after the first feedforward layer?

- This appears worse because we care more about relative positioning
What about learning the positional encodings?

- This is used sometimes and is potentially better due to greater expressivity
- There are also downsides, e.g., we can’t generalize to longer sequences

Y
—-__5-

Dimension

Index in the sequence

16

Important detail: multi-head attention

X1-§+a1 1 q
R | 24

:‘E y kl '612—k q2 - é*&lg\
XT'g’aT % aQ—E Qi 2 Vi

1
lkT—> T2 = kTCI2 - *OZT,Z

All of the key, query, and value functions (which are often just linear layers) have their own learned parameters

The final &9, and every other ay, is obtained by concatenating the outputs from every “head” and potentially

feeding this through another linear layer
17

Important detail: multi-head attention

X1 g a] q2
.8 lk X _ il
3 B 1 —e12 =k Q- >a12
XT-§>ar ll § j £ 1 ag= E Q¢ 2V
T)
kT—> eT,2:kTQ2- *OéT,g’(t

Typically, the key, query, and value dimensionalities are scaled down proportionally to the number of heads

E.g., if using dimensionality 512 for one head, scale down to dimensionality 64 for 8 heads

18

https://nlp.seas.harvard.edu/2018/04/03/attention.html

Other details

Transformers use layer normalization, dropout, and skip connections

class SublayerConnection(nn.Module):
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
def __init__ (self, size, dropout):
super(SublayerConnection, self).__init__ ()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)

def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))

https://nlp.seas.harvard.edu/2018/04/03/attention.html

The transformer encoder — full picture

e I ~
~—>| Add & Norm |
Feed
Forward
—
Nx | —(Add&Nom) |<€&—— LN, dropout, skip connection
Multi-Head
Attention
L S
] J
Positional D
Encoding
Input .
Embedaing <@—— |ookup table / linear layer
Inputs

Vaswani et al, “Attention is All You Need”. NIPS 2017.

Transformers for “decoding” (generation)

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is

finally solved. The decoder’s
Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several
companions, were exploring the Andes Mountains when they found a small valley, with no generated OUtDUt

e s e e e (so far) is fed back
_ - as input into the
Y1 decoder
T — | ; o i
or training, the
1Aerd ground truth is fed

into the decoder

Transformers for “decoding” (generation)

Yo

Yi—1 -

feedforward

v
SR

~

Yo

v

v

all)

feedforward

transformer
decoder

\/
=y
@oo

~

self-attention

v

v

feedforward

\/

s

\/

“.the”
“scientist”
113 I_a”

113 Paz!’

22

Important detail: masked attention

During training, entire sequences are passed into the model, and the model must be
prevented from “looking at the future” when learning to generate

One way to do this is to “mask” keys and values corresponding to future time steps

X1 -g+aj a2, T
. EJ . kl I 61,2 = kl q2 - (>é'> 041,2 N
a : : £ -
i = Ao = ¢ 2V
XT -8+ ar ' o E s Z Lt
kp— €12 = —00 - »ag '

\

aro =0

23

The transformer decoder — full picture

Vaswani et al, “Attention is All You Need”. NIPS 2017.

Probabilities
Softmax

Linear

Add & Norm

m

Feed
Forward

Add & Norm

I

Multi-Head
Attention

i

Add & Norm

Masked
Multi-Head

Attention

A_t 2
__ ———
d

Output

Embedding

I

Outputs

<¢— Cross attention (next week)

Nx

Positional
Encoding

24

Additional resources

- The original transformer paper
- https://arxiv.org/abs/1706.03762

- The annotated transformer (paper snippets + PyTorch code)
- https://nlp.seas.harvard.edu/2018/04/03/attention.html

- Prof. Sergey Levine’s lecture videos
- https://www.youtube.com/watch?v=VDnEnlYzHOU&list=PL_ iWQOSE6

TfVmKkOHuc jPAORtIJYt8a5A

25

https://arxiv.org/abs/1706.03762
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://www.youtube.com/watch?v=VDnEnlYzHOU&list=PL_iWQOsE6TfVmKkQHucjPAoRtIJYt8a5A
https://www.youtube.com/watch?v=VDnEnlYzHOU&list=PL_iWQOsE6TfVmKkQHucjPAoRtIJYt8a5A

