Today’s lecture

- This week, we will learn about the **transformer** neural network architecture
 - Today: the setup and basics
 - Next time (and next week as well): transformers in action
- This will be the last neural network architecture we cover
 - There are some other interesting architectures, e.g., for graph data
 - You should be able to learn new/other architectures pretty quickly now
- If you took CS 189 last semester, the slides this week may look pretty familiar
 - In fact, they’re still in last semester’s format!
 - Some new slides added in, but mostly it is last semester’s slide decks
Setup

features \mathbf{x}

- sequential data
- may be variable length

It was the best of times, it was the worst of times, it was the age

could correspond to…
- sentiment analysis, translation to another language, ...
- audio transcription, speaker identification, ...
- activity identification, video captioning, ...

or there could be no label!
- unsupervised learning / generative modeling

label \mathbf{y}

model

- Markov / n-gram models, hidden Markov models
- embedding / clustering based methods
- recurrent neural networks (RNNs)
 - GRUs, LSTMs, …
- convolutions
- transformers
Why transformers?

- Massively influential in the last 4-5 years
 - Outcompeting other deep architectures in a number of domains, e.g., RNNs in language modeling and convolutional networks in vision tasks
 - Other state-of-the-art models, though not transformers, also use attention
 - You might say they have been… transformative
- The backbone of models including BERT and GPT
 - Dubbed by Stanford as “foundation models”: https://crfm.stanford.edu/
- Surprisingly not that hard to understand
 - Once the right background knowledge is in place
Attention
Setup for attention

Originally formulated for tasks with sequential outputs

- E.g., translating from one language to another, captioning an image, …
- The features may or may not be sequential

Setup for attention

The model generates the output “one step at a time”

However, the model needs to know what is has generated so far

- We can do this via autoregressive generation from an RNN, as we learned previously

Motivation / intuition

A woman is throwing a frisbee in a park.
A dog is standing on a hardwood floor.
A stop sign is on a road with a mountain in the background.
A little girl sitting on a bed with a teddy bear.
A group of people sitting on a boat in the water.
A giraffe standing in a forest with trees in the background.

What do we attend over?

It depends on the task. Some examples:

- If the features are words, we can attend over them directly
- What if the features are pixels in an image?

Attention: the details

“key-value-query” system:

\[q_t = q(\text{model info from prev step}) \]
\[k_l = k(c_l) \]
\[v_l = v(c_l) \]

These functions are learned and can be, e.g., simple linear layers

\[\text{softmax} \]
\[\alpha_{l,2} \]
\[a_2 = \sum_l \alpha_{l,2} v_l \]

Self-attention: the building block of transformers

The goal of self-attention is to handle sequential features as the input. Think of it as a neural network layer that allows for processing the whole sequence.

“key-value-query” system:

\[q_t = q(x_t) \]
\[k_t = k(x_t) \]
\[v_t = v(x_t) \]

These functions are learned and can be, e.g., simple linear layers.

Detail: scaled dot product attention

\[e_{1,2} = k_1^\top q_2 \]
\[e_{T,2} = k_T^\top q_2 \]
\[a_{1,2} = \sum_t \alpha_{t,2} v_t \]

Divide each \(e_{t,2} \) by \(\sqrt{d} \).
Transformers

Aside: X is all you need

Convolutions Attention MLPs
Patches Are All You Need? 😜

Anonymous authors
Paper under double-blind review

Abstract

Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together...
Transformers for “encoding” (representation learning)

feedforward layers are “position-wise”, i.e., not across time positions in the sequence!

“representations”
“embeddings”
“features”
used for tasks “downstream”
Important detail: positional encoding

Typically after the first feedforward layer, a positional encoding is added to each $h_t^{(1)}$.

Without this, the model cannot distinguish between different permutations of the same input sequence.

Don’t stare at this too hard, but a common choice is to add:

$$p_t = \begin{bmatrix} \sin(t/10000^{2*1/d}) \\ \cos(t/10000^{2*1/d}) \\ \sin(t/10000^{2*2/d}) \\ \cos(t/10000^{2*2/d}) \\ \ldots \\ \sin(t/10000^{2*(d/2)/d}) \\ \cos(t/10000^{2*(d/2)/d}) \end{bmatrix}$$

For more details, see https://nlp.seas.harvard.edu/2018/04/03/attention.html
Important detail: positional encoding

This choice of positional encoding looks pretty strange, are there alternatives?

What about just concatenating the time step after the first feedforward layer?
 - This appears worse because we care more about relative positioning

What about learning the positional encodings?
 - This is used sometimes and is potentially better due to greater expressivity
 - There are also downsides, e.g., we can’t generalize to longer sequences
Important detail: multi-head attention

All of the key, query, and value functions (which are often just linear layers) have their own learned parameters.

The final a_2, and every other a_t, is obtained by concatenating the outputs from every “head” and potentially feeding this through another linear layer.
Important detail: multi-head attention

Typically, the key, query, and value dimensionalities are scaled down proportionally to the number of heads.

E.g., if using dimensionality 512 for one head, scale down to dimensionality 64 for 8 heads.
Others details

Transformers use layer normalization, dropout, and skip connections

```python
class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        """Apply residual connection to any sublayer with the same size."""
        return x + self.dropout(sublayer(self.norm(x)))
```
The transformer encoder – full picture

Vaswani et al., "Attention is All You Need". NIPS 2017.
Transformers for “decoding” (generation)

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

The decoder’s generated output (so far) is fed back as input into the decoder.

For training, the ground truth is fed into the decoder.
Transformers for “decoding” (generation)

\[
\begin{bmatrix}
 y_0 \\
 \vdots \\
 y_{t-1}
\end{bmatrix} \xrightarrow{\text{transformer decoder}} y_t
\]

Feedforward \rightarrow Self-attention \rightarrow Feedforward

\begin{align*}
 y_0 & \rightarrow h_1^{(1)} \rightarrow a_1^{(1)} \rightarrow h_1^{(2)} \rightarrow a_1^{(2)} \rightarrow \cdots \\
 y_{t-1} & \rightarrow h_t^{(1)} \rightarrow a_t^{(1)} \rightarrow h_t^{(2)} \rightarrow a_t^{(2)} \rightarrow \cdots \\
 y_t & \rightarrow \text{feedforward}
\end{align*}

\begin{align*}
 y_1 & \rightarrow \text{“the”} \\
 \vdots & \rightarrow \text{“scientist”} \\
 y_t & \rightarrow \text{“La”} \\
 \vdots & \rightarrow \text{“Paz”}
\end{align*}
Important detail: masked attention

During training, entire sequences are passed into the model, and the model must be prevented from “looking at the future” when learning to generate.

One way to do this is to “mask” keys and values corresponding to future time steps.
The transformer decoder – full picture

Additional resources

- The original transformer paper
 - https://arxiv.org/abs/1706.03762

- The annotated transformer (paper snippets + PyTorch code)
 - https://nlp.seas.harvard.edu/2018/04/03/attention.html

- Prof. Sergey Levine’s lecture videos
 - https://www.youtube.com/watch?v=VDnEn1YzHOU&list=PL_iWQOsE6TfVmKkQHucjPAoRtIJYt8a5A