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Today’s lecture

- This week, we will learn about the transformer neural network architecture
- Today: the setup and basics
- Next time (and next week as well): transformers in action

- This will be the last neural network architecture we cover
- There are some other interesting architectures, e.g., for graph data
- You should be able to learn new/other architectures pretty quickly now

- If you took CS 189 last semester, the slides this week may look pretty familiar
- In fact, they’re still in last semester’s format!
- Some new slides added in, but mostly it is last semester’s slide decks
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label

Setup

features model

could correspond to…
- sentiment analysis,

translation to another language,
…

- audio transcription,
speaker identification,
…

- activity identification,
video captioning,
…

or there could be no label!
- unsupervised learning /

generative modeling
- sequential data
- may be variable length

- Markov / n-gram models, 
hidden Markov models

- embedding / clustering based 
methods

- recurrent neural networks 
(RNNs)

- GRUs, LSTMs, …
- convolutions
- transformers
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Why transformers?

- Massively influential in the last 4-5 years
- Outcompeting other deep architectures in a number of domains, e.g.,

RNNs in language modeling and convolutional networks in vision tasks
- Other state-of-the-art models, though not transformers, also use attention
- You might say they have been… transformative

- The backbone of models including BERT and GPT
- Dubbed by Stanford as “foundation models”: https://crfm.stanford.edu/

- Surprisingly not that hard to understand
- Once the right background knowledge is in place
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Attention
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Setup for attention

Originally formulated for tasks with sequential outputs

- E.g., translating from one language to another, captioning an image, …
- The features may or may not be sequential

model

“a”
“bird”
“flying”
“over”
…
“water”
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Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.



Setup for attention

“a”
“bird”
“flying”
“over”
…
“water”

model

The model generates the output “one step at a time”

However, the model needs to know what is has generated so far

- We can do this via autoregressive generation from an RNN, as we learned previously
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model

<start>

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.



Motivation / intuition
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Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.



What do we attend over?

It depends on the task. Some examples:

- If the features are words, we can attend over them directly
- What if the features are pixels in an image?

conv net
top layers

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.
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(just the attention part, output generation not shown)

Attention: the details

conv net
top layers

so
ftm

ax

“bird”

“key-value-query” system:
model info 

from prev step

These functions are learned 
and can be, e.g.,
simple linear layers

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.
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Self-attention: the building block of transformers

The goal of self-attention is to handle sequential features as the input

Think of it as a neural network layer that allows for processing the whole sequence

“key-value-query” system:

These functions are learned 
and can be, e.g.,
simple linear layers
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Detail: scaled dot product attention

Divide each           by 



Transformers
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Vaswani et al, “Attention is All You Need”. NIPS 2017.



Aside: X is all you need

https://github.com/vinayprabhu/X-is-all-you-need
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Transformers for “encoding” (representation learning)

transformer
encoder

feedforward layers are “position-wise”, i.e.,
not across time positions in the sequence!
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used for tasks 
“downstream”
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Typically after the first feedforward layer, a positional encoding is added to each

Important detail: positional encoding

Without this, the model cannot distinguish between different permutations of the 
same input sequence

Don’t stare at this too hard, but a common choice is to add:

dimensionality of

https://nlp.seas.harvard.edu/2018/04/03/attention.html
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This choice of positional encoding looks pretty strange, are there alternatives?

What about just concatenating the time step after the first feedforward layer?

- This appears worse because we care more about relative positioning

Important detail: positional encoding
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What about learning the positional encodings?

- This is used sometimes and is potentially better due to greater expressivity
- There are also downsides, e.g., we can’t generalize to longer sequences



Important detail: multi-head attention
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All of the key, query, and value functions (which are often just linear layers) have their own learned parameters

The final      , and every other      , is obtained by concatenating the outputs from every “head” and potentially 
feeding this through another linear layer
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Important detail: multi-head attention
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Typically, the key, query, and value dimensionalities are scaled down proportionally to the number of heads

E.g., if using dimensionality 512 for one head, scale down to dimensionality 64 for 8 heads
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Other details

Transformers use layer normalization, dropout, and skip connections
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The transformer encoder – full picture
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lookup table / linear layer

LN, dropout, skip connection

Vaswani et al, “Attention is All You Need”. NIPS 2017.



Transformers for “decoding” (generation)

transformer
decoder

The decoder’s 
generated output 
(so far) is fed back 
as input into the 
decoder

For training, the 
ground truth is fed 
into the decoder
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Transformers for “decoding” (generation)

transformer
decoder

“the”
“scientist”
…
“La”
“Paz”fe
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Important detail: masked attention

During training, entire sequences are passed into the model, and the model must be 
prevented from “looking at the future” when learning to generate

One way to do this is to “mask” keys and values corresponding to future time steps
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The transformer decoder – full picture
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Vaswani et al, “Attention is All You Need”. NIPS 2017.

cross attention (next week)



Additional resources

- The original transformer paper
- https://arxiv.org/abs/1706.03762

- The annotated transformer (paper snippets + PyTorch code)
- https://nlp.seas.harvard.edu/2018/04/03/attention.html

- Prof. Sergey Levine’s lecture videos
- https://www.youtube.com/watch?v=VDnEnlYzHOU&list=PL_iWQOsE6

TfVmKkQHucjPAoRtIJYt8a5A

25

https://arxiv.org/abs/1706.03762
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://www.youtube.com/watch?v=VDnEnlYzHOU&list=PL_iWQOsE6TfVmKkQHucjPAoRtIJYt8a5A
https://www.youtube.com/watch?v=VDnEnlYzHOU&list=PL_iWQOsE6TfVmKkQHucjPAoRtIJYt8a5A

