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Lecture 11: Midterm 1 review
CS 182/282A (“Deep Learning”)
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Today’s lecture

• No lecture Wednesday! You have midterm 1 instead 

• No new content today — just a collection of past slides and relevant questions 
that can be answered by reviewing the course content so far 

• This is meant to get you started, if you haven’t started yet, on your studying 

• But hopefully you have started studying… 

• Not a substitute for studying on your own! E.g., doing the past/practice midterm 

• We may not get through all slides, but you can review the rest on your own
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Midterm 1 logistics

• For all students with standard accommodations (if you’re not sure, this is you): 

• Midterm time is 7-9pm — arrive promptly at 7pm, we begin promptly at 7:10 

• All 182 students, and 282A students with last names starting with Q-Z: 
Pimentel 1 

• 282A students with last names starting with A-P: Evans 60 

• Students with DSP accommodations: make a private Piazza post if you have not 
yet received your specific logistics 

• One double sided 8.5x11in cheat sheet is permitted
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Introduction
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The underlying themes
End-to-end learning and scaling

• Deep learning acquires representations by using high capacity models and lots of 
data, without requiring engineering features or representations 

• We don’t need to know what the good features are, we can have the model figure 
it out from the data 

• This results in better performance, because when representations are learned 
end-to-end, they are better tailored to the current task 

• Scaling is the ability of an algorithm to work better as more data and model 
capacity are added 

• Deep learning methods are really good at scaling
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The underlying themes
Inductive bias vs. learning

• Inductive bias vs. learning can be thought of as “nature vs. nurture”: getting 
performance from designer insight vs. from data, respectively 

• Inductive bias: the knowledge we build into the model to make it learn effectively 

• All such knowledge is “bias” in the sense that it makes some solutions more 
likely and some less likely 

• We can never fully get rid of the need for inductive biases! 

• A common theme in deep learning for many applications: 
deep neural network models overtake the next best model after we figure out the 
right inductive biases for that application
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ML review
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The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, … 

2. Define your loss function — which parameters are good vs. bad? 

3. Define your optimizer — how do we find good parameters? 

4. Run it on a big GPU
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Probabilistic models

• Often, it makes more sense to have the model predict output probabilities, rather 
than the outputs themselves 

• This can better capture uncertainty and also makes the learning process easier 

• So instead of the model output   being a single , it will instead be an entire 
distribution over all possible  

• E.g., for digit recognition, the output will be 10 numbers between 0 and 1 that 
sum to 1 

• How is this done, mathematically and practically (in code)?

fθ(x) y
y
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Negative log likelihood loss

• How is the negative log likelihood loss function motivated from maximum 
likelihood estimation? 

• Why is it oftentimes called the cross-entropy loss function? 

• What is another example of negative log likelihood loss for a different problem? 

• How is this loss implemented practically (in code)? 

• What is an example of another loss function that isn’t negative log likelihood?
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Gradient based optimization

• Deep learning relies on iterative optimization to find good parameters 

• Starting from an initial “guess”, continually refine that guess until we are 
satisfied with our final answer 

• By far the most commonly used set of iterative optimization techniques in deep 
learning is (first order) gradient based optimization and variants thereof 

• Basically, move the parameters in the direction of the negative gradient of the 

average loss: θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)
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A small example: logistic regression
The “linear neural network”, if we’re being weird

• Given , define  , where  is a  matrix 

• Then, for class , we have  

• Loss function:  

• Optimization: 

x ∈ ℝd fθ(x) = θ⊤x θ d × K

c ∈ {0,…, K − 1} pθ(y = c |x) = softmax( fθ(x))c

ℓ(θ; x, y) = − log pθ(y |x)

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)
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The machine learning workflow

1. Learn  on the training set 
• if the training loss is not low enough… 
• you are underfitting! increase model capacity, improve optimizer, … 
• and go back to step 1 

2. Measure loss on the validation set 
• if the training loss is much smaller than the validation loss… 
• you are overfitting! decrease model capacity, collect more data, … 
• and go back to step 1 

3. Not overfitting or underfitting? You’re done

θ
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True risk and empirical risk

• Risk is defined as expected loss:  

• This is sometimes called true risk to distinguish from empirical risk below 

• Empirical risk is the average loss on the training set:  

• Supervised learning is oftentimes empirical risk minimization (ERM) 

• Why are empirical and true risk different? How do we fix this? 

• What do we call differences between the empirical and true risk?

R(θ) = ([ℓ(θ; x, y)]

R̂(θ) = 1
N

N

∑
i=1

ℓ(θ; xi, yi)
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Regularization

• Broadly speaking, a regularizer is anything we add to the loss function, 
optimization, and/or model that does not depend on the data 

• We add it to encode some prior belief about what a “good” model looks like — 
hence, it is a form of inductive bias 

• A classic example is -regularization, which adds  to the loss function 

• Why is this a good idea? Smaller parameters typically correspond to smoother 
functions that change less dramatically as the input changes 

• In classification, this is often (somewhat erroneously) referred to as weight decay

ℓ2 λ∥θ∥2
2
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Bias and variance

• How are bias and variance defined, intuitively and mathematically? 

• How do these concepts relate to overfitting and underfitting? 

• How do we derive the bias-variance decomposition? 
([( fθ(+)(x′ ) − y′ )2] = ( f̄(x′ ) − f(x′ ))2 + ([( fθ(+)(x′ ) − f̄(x′ ))2] + σ2

20

underfittingoverfitting



Neural network basics
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Neural networks
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Backpropagation

• First, we perform a forward pass and cache all the intermediate ,  

• Then, we work our way backwards to compute all the ,  

• Going backwards allows us to reuse gradients that have already been computed 

• It also results in matrix-vector product computations, which are far more efficient 
than matrix-matrix product computations 

• After all the gradients have been computed, we are ready to take a gradient step 

• How does this compare to the method of finite differences?

z(l) a(l)

∇W(l)ℓ ∇b(l)ℓ
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Automatic differentiation

• Why do we care about autodiff when we already implemented backpropagation 
for our simple neural network model? 

• What is the difference between forward mode and reverse mode autodiff? 

• Which one is more useful for deep learning and why? 

• What role do computation graphs play in autodiff? 

• Go through the end of Matt’s slides as well as the coding example from lecture, 
make sure you understand the high level ideas 
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Neural network building blocks
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Input standardization

• Input standardization is carried out for each dimension of the input separately 

• For each training input, for each dimension , we subtract the mean 

 and divide by  

• There are some variations on this, e.g., this is usually done per channel for image 
inputs rather than per dimension 

• And for discrete inputs, such as in language, this is typically not done at all

d

μd = 1
N

N

∑
i=1

xd σd = 1
N

N

∑
i=1

(xd − μd)2
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Batch normalization (BN)

• BN refers to normalizing  or  using statistics computed from the mini batch 

• We can think of this as putting a BN “layer” either before or after the nonlinearity 

• The BN layer also includes learnable scale and shift parameters 

• Models with BN layers operate in two different modes: “train” vs. “test” or “eval” 

• Train mode: compute statistics using the mini batch 

• Eval mode: use an exponential moving average of the statistics computed 
during train time

z(l) a(l)
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Layer normalization (LN)
And comparing BN to LN

• LN is basically the “transpose” of BN: compute the mean and standard deviation 
of  across the feature dimensions, rather than per dimension 

• Now, each data point will have different normalization statistics, but these 
statistics are shared across dimensions 

• How is LN different from BN? How is it similar? 

• What are the tradeoffs of BN vs. LN? 

• What are their shared benefits or downsides?

z(l)
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Comparing different common nonlinearities

• Both  and  are non negative and 
monotonically non decreasing 

•  and  are smooth, which is sometimes 
important from an optimization perspective 

•  is historically an important activation but 
is rarely the only nonlinearity used in today’s 
neural networks

sigmoid ReLU

sigmoid GELU

sigmoid
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Skip connections

• Basically every state-of-the-art neural network uses skip connections 

• Very simple high level idea: , rather than just  

• This idea was popularized by residual 
convolutional networks (ResNets) 

• Allowed for training much deeper, 
more performant models 

• The loss “landscape” of neural networks 
with residual connections looks much nicer

a(l) = σ(z(l)) + a(l−1) a(l) = σ(z(l))
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Weight initialization
A thought exercise

• What should we initialize our neural network parameters (weights) to? This question is less important 
with the advent of BN and LN, but it is still interesting to think about 

• If  in each dimension , and we initialize each … 

• …then we get  

• Therefore, picking  gives us outputs similar in magnitude to the inputs 

• We can do this at every linear layer, i.e., initialize each  with variance inversely proportional to 
the input dimensionality to that layer 

• In practice: it’s slightly more complicated, but it’s done for you by deep learning libraries

xj ∼ .(0, 1) j W(1)
ij ∼ .(0, σ2

W)

([z2
i ] = ∑j

([(W(1)
ij )2]([x2

j ] = dσ2
W

σ2
W = 1

d
W(l)
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Dropout
Correction: this is actually DropConnect

• Often, dropout (or DropConnect, or drop-*) is applied to our model during training 

• DropConnect is very simple: randomly zero out some fraction  of the  

• Can implement as element wise multiplication of each  with a boolean mask 

• Drop-* builds redundancies into the model, such that it doesn’t rely too much on 
any particular “pathways” through the network 

• Yet another example of inductive biases at work! 

• Some care should be taken to make training vs. test output magnitudes consistent

p Wij

W(l)
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Data augmentations, briefly
We’ll talk more about this topic later in the course

• For some problems, data augmentations are an indispensable part of training 

• E.g., for image classification: we apply random flips and crops to the images 

• This is useful for encoding invariances, e.g., flipping and 
cropping do not change the image class 

• Another inductive bias! 

• For some domains, such as natural language, it is harder 
to come up with good data augmentation schemes
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Neural network ensembles

• If you have enough compute, training multiple neural networks is often useful 

• Same concept as bagging for other machine learning models — an ensemble of models 
reduces variance and combats overfitting 

• Turns out, also very good at uncertainty quantification 

• In theory: create different bootstrap samples of the dataset to train the models 

• In practice for neural networks: just train them all on all of the data 

• In theory: when predicting, average all of their output probabilities together 

• In practice: just take a majority vote
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Hyperparameter optimization

• Typically, tuning hyperparameters goes from “coarse to fine” 

• E.g., first find the right order of magnitude for the learning rate, then zero in 

• Hyperparameter search can be done with randomly sampled values or in a grid 

• When grid searching, it is standard to space values evenly in log space 

• For example, to cover [0.001, 0.01] approximately evenly, use: 

• [0.001, 0.003, 0.01] if grid searching with three values 

• [0.001, 0.002, 0.005, 0.01] if grid searching with four values
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Convolutional networks
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The key idea behind conv nets

• The key idea behind reducing the massive number of parameters is the 
observation that many useful image features are local 

• E.g., edge information, used by many once-popular hand designed features 

• We won’t go so far as to hand design the features, but we will place limits on the 
features that can be learned via the architecture 

• Inductive biases at work 

• Useful nonlocal information can also be captured 
by stacking multiple convolutions together
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The convolution layer

• Convolution is performed with a filter — a tensor with dimensions  
(e.g., ) — and a -dimensional bias term 

• (2D) convolutions take in an input of size  (or , depending on 
the convention) and output a tensor of size  

• What are  and ? 

• Because the output has similar dimensions, we can stack convolutions on top of 
each other to make deep convolutional networks

[K, K, O, I]
[3, 3, 4, 3] O

[I, H, W] [H, W, I]
[O, H′ , W′ ]

H′ W′ 
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Convolutional networks

• A simple convolutional network repeats the convolution  BN   recipe  
times to process the input image into a representation  

• We flatten or pool  into a one dimensional vector, pass it through one or more 
linear layers, and then (for classification) get our final probabilities with 

→ → ReLU L
a(L)

a(L)

softmax
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ImageNet image classification

• ImageNet consists of  images evenly covering  classes 

• There are  training images and  evaluation images 

• ImageNet-22K is a larger version of ImageNet (roughly larger) with  
classes, increasingly used these days due to expanding compute budgets 

• It is common for computer vision applications to start from a network pretrained 
on ImageNet

224 × 224 × 3 1000
1.2M 50000

10 × 22000
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Skip connections in convolutional networks
He et al, 2015

• Recall the general idea behind skip connections:  

• This idea was popularized by residual networks (ResNets), a convolutional 
architecture that implemented the idea slightly differently (and in two ways) 

• This allowed for better training of deeper networks, which are more performant

a(l) = σ(z(l)) + a(l−1)

41

He et al, 2015



Depth wise (or grouped) convolutions
E.g., Xie et al, 2016

• In depth wise (resp. grouped) convolutions, the filter and input are split by 
channels (resp. groups of channels), convolved separately, then concatenated 

• We can increase the number of channels and maintain roughly the same 
computational complexity with this technique, and performance often improves
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A recent state-of-the-art example
Liu et al, 2022

• ConvNeXt is a recent state-of-the-art conv net that aggregates 
several methods to achieve improved performance 

• Improved training techniques (cosine learning rate schedule, 
AdamW, lots of data augmentation) turn out to help significantly 

• Using depth wise convolutions (and proportionally increasing 
the number of channels) also significantly improves accuracy 

• Some other changes, such as swapping BN for LN and 
swapping ReLU for GELU, provide smaller gains but appear to 
not be as important
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Computer vision

• Make sure to review Prof. Malik’s lecture and absorb the high level ideas 

• What are some computer vision problems other than image classification that 
researchers have tackled? 

• What is the current “frontier” of problems that are being tackled? 

• And what are the high level ideas behind how to tackle these problems? 

• What are the “problems of the future”? What are the challenges facing the field of 
computer vision and AI as a whole?
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