
2022/02/28

Lecture 11: Midterm 1 review
CS 182/282A (“Deep Learning”)

1

 



Today’s lecture

• No lecture Wednesday! You have midterm 1 instead 

• No new content today — just a collection of past slides and relevant questions 
that can be answered by reviewing the course content so far 

• This is meant to get you started, if you haven’t started yet, on your studying 

• But hopefully you have started studying… 

• Not a substitute for studying on your own! E.g., doing the past/practice midterm 

• We may not get through all slides, but you can review the rest on your own

6



Midterm 1 logistics

• For all students with standard accommodations (if you’re not sure, this is you): 

• Midterm time is 7-9pm — arrive promptly at 7pm, we begin promptly at 7:10 

• All 182 students, and 282A students with last names starting with Q-Z: 
Pimentel 1 

• 282A students with last names starting with A-P: Evans 60 

• Students with DSP accommodations: make a private Piazza post if you have not 
yet received your specific logistics 

• One double sided 8.5x11in cheat sheet is permitted
7



Introduction

8



The underlying themes
End-to-end learning and scaling

• Deep learning acquires representations by using high capacity models and lots of 
data, without requiring engineering features or representations 

• We don’t need to know what the good features are, we can have the model figure 
it out from the data 

• This results in better performance, because when representations are learned 
end-to-end, they are better tailored to the current task 

• Scaling is the ability of an algorithm to work better as more data and model 
capacity are added 

• Deep learning methods are really good at scaling

9



The underlying themes
Inductive bias vs. learning

• Inductive bias vs. learning can be thought of as “nature vs. nurture”: getting 
performance from designer insight vs. from data, respectively 

• Inductive bias: the knowledge we build into the model to make it learn effectively 

• All such knowledge is “bias” in the sense that it makes some solutions more 
likely and some less likely 

• We can never fully get rid of the need for inductive biases! 

• A common theme in deep learning for many applications: 
deep neural network models overtake the next best model after we figure out the 
right inductive biases for that application

10



ML review

11



The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, … 

2. Define your loss function — which parameters are good vs. bad? 

3. Define your optimizer — how do we find good parameters? 

4. Run it on a big GPU

12



Probabilistic models

• Often, it makes more sense to have the model predict output probabilities, rather 
than the outputs themselves 

• This can better capture uncertainty and also makes the learning process easier 

• So instead of the model output   being a single , it will instead be an entire 
distribution over all possible  

• E.g., for digit recognition, the output will be 10 numbers between 0 and 1 that 
sum to 1 

• How is this done, mathematically and practically (in code)?

fθ(x) y
y

13



Negative log likelihood loss

• How is the negative log likelihood loss function motivated from maximum 
likelihood estimation? 

• Why is it oftentimes called the cross-entropy loss function? 

• What is another example of negative log likelihood loss for a different problem? 

• How is this loss implemented practically (in code)? 

• What is an example of another loss function that isn’t negative log likelihood?

14



Gradient based optimization

• Deep learning relies on iterative optimization to find good parameters 

• Starting from an initial “guess”, continually refine that guess until we are 
satisfied with our final answer 

• By far the most commonly used set of iterative optimization techniques in deep 
learning is (first order) gradient based optimization and variants thereof 

• Basically, move the parameters in the direction of the negative gradient of the 

average loss: θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

15



A small example: logistic regression
The “linear neural network”, if we’re being weird

• Given , define  , where  is a  matrix 

• Then, for class , we have  

• Loss function:  

• Optimization: 

x ∈ ℝd fθ(x) = θ⊤x θ d × K

c ∈ {0,…, K − 1} pθ(y = c |x) = softmax( fθ(x))c

ℓ(θ; x, y) = − log pθ(y |x)

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

16



The machine learning workflow

1. Learn  on the training set 
• if the training loss is not low enough… 
• you are underfitting! increase model capacity, improve optimizer, … 
• and go back to step 1 

2. Measure loss on the validation set 
• if the training loss is much smaller than the validation loss… 
• you are overfitting! decrease model capacity, collect more data, … 
• and go back to step 1 

3. Not overfitting or underfitting? You’re done

θ

17

training set

validation set



True risk and empirical risk

• Risk is defined as expected loss:  

• This is sometimes called true risk to distinguish from empirical risk below 

• Empirical risk is the average loss on the training set:  

• Supervised learning is oftentimes empirical risk minimization (ERM) 

• Why are empirical and true risk different? How do we fix this? 

• What do we call differences between the empirical and true risk?

R(θ) = ([ℓ(θ; x, y)]

R̂(θ) = 1
N

N

∑
i=1

ℓ(θ; xi, yi)

18



Regularization

• Broadly speaking, a regularizer is anything we add to the loss function, 
optimization, and/or model that does not depend on the data 

• We add it to encode some prior belief about what a “good” model looks like — 
hence, it is a form of inductive bias 

• A classic example is -regularization, which adds  to the loss function 

• Why is this a good idea? Smaller parameters typically correspond to smoother 
functions that change less dramatically as the input changes 

• In classification, this is often (somewhat erroneously) referred to as weight decay

ℓ2 λ∥θ∥2
2

19



Bias and variance

• How are bias and variance defined, intuitively and mathematically? 

• How do these concepts relate to overfitting and underfitting? 

• How do we derive the bias-variance decomposition? 
([( fθ(+)(x′ ) − y′ )2] = ( f̄(x′ ) − f(x′ ))2 + ([( fθ(+)(x′ ) − f̄(x′ ))2] + σ2

20

underfittingoverfitting



Neural network basics

21



Neural networks

22

x z(2)

linear layer
… softmax

z(1)

linear layer

a(1)

nonlinearity

a(2)

nonlinearity

softmax

x a(2)

nonlinear 
layer

…

a(1)

nonlinear 
layer

a(L)

nonlinear 
layer

z

linear layer



Backpropagation

• First, we perform a forward pass and cache all the intermediate ,  

• Then, we work our way backwards to compute all the ,  

• Going backwards allows us to reuse gradients that have already been computed 

• It also results in matrix-vector product computations, which are far more efficient 
than matrix-matrix product computations 

• After all the gradients have been computed, we are ready to take a gradient step 

• How does this compare to the method of finite differences?

z(l) a(l)

∇W(l)ℓ ∇b(l)ℓ

23



Automatic differentiation

• Why do we care about autodiff when we already implemented backpropagation 
for our simple neural network model? 

• What is the difference between forward mode and reverse mode autodiff? 

• Which one is more useful for deep learning and why? 

• What role do computation graphs play in autodiff? 

• Go through the end of Matt’s slides as well as the coding example from lecture, 
make sure you understand the high level ideas 

24



Neural network building blocks

25



Input standardization

• Input standardization is carried out for each dimension of the input separately 

• For each training input, for each dimension , we subtract the mean 

 and divide by  

• There are some variations on this, e.g., this is usually done per channel for image 
inputs rather than per dimension 

• And for discrete inputs, such as in language, this is typically not done at all

d

μd = 1
N

N

∑
i=1

xd σd = 1
N

N

∑
i=1

(xd − μd)2

26



Batch normalization (BN)

• BN refers to normalizing  or  using statistics computed from the mini batch 

• We can think of this as putting a BN “layer” either before or after the nonlinearity 

• The BN layer also includes learnable scale and shift parameters 

• Models with BN layers operate in two different modes: “train” vs. “test” or “eval” 

• Train mode: compute statistics using the mini batch 

• Eval mode: use an exponential moving average of the statistics computed 
during train time

z(l) a(l)

27



Layer normalization (LN)
And comparing BN to LN

• LN is basically the “transpose” of BN: compute the mean and standard deviation 
of  across the feature dimensions, rather than per dimension 

• Now, each data point will have different normalization statistics, but these 
statistics are shared across dimensions 

• How is LN different from BN? How is it similar? 

• What are the tradeoffs of BN vs. LN? 

• What are their shared benefits or downsides?

z(l)

28



Comparing different common nonlinearities

• Both  and  are non negative and 
monotonically non decreasing 

•  and  are smooth, which is sometimes 
important from an optimization perspective 

•  is historically an important activation but 
is rarely the only nonlinearity used in today’s 
neural networks

sigmoid ReLU

sigmoid GELU

sigmoid

29



Skip connections

• Basically every state-of-the-art neural network uses skip connections 

• Very simple high level idea: , rather than just  

• This idea was popularized by residual 
convolutional networks (ResNets) 

• Allowed for training much deeper, 
more performant models 

• The loss “landscape” of neural networks 
with residual connections looks much nicer

a(l) = σ(z(l)) + a(l−1) a(l) = σ(z(l))

30

Li et al, NIPS ’18 Li et al, NIPS ’18



Weight initialization
A thought exercise

• What should we initialize our neural network parameters (weights) to? This question is less important 
with the advent of BN and LN, but it is still interesting to think about 

• If  in each dimension , and we initialize each … 

• …then we get  

• Therefore, picking  gives us outputs similar in magnitude to the inputs 

• We can do this at every linear layer, i.e., initialize each  with variance inversely proportional to 
the input dimensionality to that layer 

• In practice: it’s slightly more complicated, but it’s done for you by deep learning libraries

xj ∼ .(0, 1) j W(1)
ij ∼ .(0, σ2

W)

([z2
i ] = ∑j

([(W(1)
ij )2]([x2

j ] = dσ2
W

σ2
W = 1

d
W(l)

31



Dropout
Correction: this is actually DropConnect

• Often, dropout (or DropConnect, or drop-*) is applied to our model during training 

• DropConnect is very simple: randomly zero out some fraction  of the  

• Can implement as element wise multiplication of each  with a boolean mask 

• Drop-* builds redundancies into the model, such that it doesn’t rely too much on 
any particular “pathways” through the network 

• Yet another example of inductive biases at work! 

• Some care should be taken to make training vs. test output magnitudes consistent

p Wij

W(l)

32



Data augmentations, briefly
We’ll talk more about this topic later in the course

• For some problems, data augmentations are an indispensable part of training 

• E.g., for image classification: we apply random flips and crops to the images 

• This is useful for encoding invariances, e.g., flipping and 
cropping do not change the image class 

• Another inductive bias! 

• For some domains, such as natural language, it is harder 
to come up with good data augmentation schemes

33

https://neptune.ai/blog/data-augmentation-in-python

https://neptune.ai/blog/data-augmentation-in-python


Neural network ensembles

• If you have enough compute, training multiple neural networks is often useful 

• Same concept as bagging for other machine learning models — an ensemble of models 
reduces variance and combats overfitting 

• Turns out, also very good at uncertainty quantification 

• In theory: create different bootstrap samples of the dataset to train the models 

• In practice for neural networks: just train them all on all of the data 

• In theory: when predicting, average all of their output probabilities together 

• In practice: just take a majority vote

34



Hyperparameter optimization

• Typically, tuning hyperparameters goes from “coarse to fine” 

• E.g., first find the right order of magnitude for the learning rate, then zero in 

• Hyperparameter search can be done with randomly sampled values or in a grid 

• When grid searching, it is standard to space values evenly in log space 

• For example, to cover [0.001, 0.01] approximately evenly, use: 

• [0.001, 0.003, 0.01] if grid searching with three values 

• [0.001, 0.002, 0.005, 0.01] if grid searching with four values

35



Convolutional networks

36



The key idea behind conv nets

• The key idea behind reducing the massive number of parameters is the 
observation that many useful image features are local 

• E.g., edge information, used by many once-popular hand designed features 

• We won’t go so far as to hand design the features, but we will place limits on the 
features that can be learned via the architecture 

• Inductive biases at work 

• Useful nonlocal information can also be captured 
by stacking multiple convolutions together

37



The convolution layer

• Convolution is performed with a filter — a tensor with dimensions  
(e.g., ) — and a -dimensional bias term 

• (2D) convolutions take in an input of size  (or , depending on 
the convention) and output a tensor of size  

• What are  and ? 

• Because the output has similar dimensions, we can stack convolutions on top of 
each other to make deep convolutional networks

[K, K, O, I]
[3, 3, 4, 3] O

[I, H, W] [H, W, I]
[O, H′ , W′ ]

H′ W′ 

38



Convolutional networks

• A simple convolutional network repeats the convolution  BN   recipe  
times to process the input image into a representation  

• We flatten or pool  into a one dimensional vector, pass it through one or more 
linear layers, and then (for classification) get our final probabilities with 

→ → ReLU L
a(L)

a(L)

softmax

39

softmax

x a(2)

conv layer
…

a(1)

conv layer

a(L)

conv layer

z

linear layer



ImageNet image classification

• ImageNet consists of  images evenly covering  classes 

• There are  training images and  evaluation images 

• ImageNet-22K is a larger version of ImageNet (roughly larger) with  
classes, increasingly used these days due to expanding compute budgets 

• It is common for computer vision applications to start from a network pretrained 
on ImageNet

224 × 224 × 3 1000
1.2M 50000

10 × 22000

40



Skip connections in convolutional networks
He et al, 2015

• Recall the general idea behind skip connections:  

• This idea was popularized by residual networks (ResNets), a convolutional 
architecture that implemented the idea slightly differently (and in two ways) 

• This allowed for better training of deeper networks, which are more performant

a(l) = σ(z(l)) + a(l−1)

41

He et al, 2015



Depth wise (or grouped) convolutions
E.g., Xie et al, 2016

• In depth wise (resp. grouped) convolutions, the filter and input are split by 
channels (resp. groups of channels), convolved separately, then concatenated 

• We can increase the number of channels and maintain roughly the same 
computational complexity with this technique, and performance often improves

42



A recent state-of-the-art example
Liu et al, 2022

• ConvNeXt is a recent state-of-the-art conv net that aggregates 
several methods to achieve improved performance 

• Improved training techniques (cosine learning rate schedule, 
AdamW, lots of data augmentation) turn out to help significantly 

• Using depth wise convolutions (and proportionally increasing 
the number of channels) also significantly improves accuracy 

• Some other changes, such as swapping BN for LN and 
swapping ReLU for GELU, provide smaller gains but appear to 
not be as important

43



Computer vision

• Make sure to review Prof. Malik’s lecture and absorb the high level ideas 

• What are some computer vision problems other than image classification that 
researchers have tackled? 

• What is the current “frontier” of problems that are being tackled? 

• And what are the high level ideas behind how to tackle these problems? 

• What are the “problems of the future”? What are the challenges facing the field of 
computer vision and AI as a whole?

44


