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Lecture 10: Recurrent networks
CS 182/282A (“Deep Learning”)
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Today’s lecture

• The bulk of today’s lecture will cover a class of models known as recurrent 
neural networks (RNNs), which were designed to process sequential data 

• However, we will first wrap up our discussion of image data with one final cool 
application: style transfer 

• Together, this material should be sufficient for working on HW2 

• HW2 also covers some network visualization topics that we won’t discuss in 
lecture, though these topics are well explained by the assignment itself
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Style transfer 
(some images borrowed from Stanford CS231n) 
(some images borrowed from the original paper, Gatys et al 2016)
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Generating images from CNNs

• Suppose you have a CNN trained to do image classification, and you wish to use 
the CNN to do image generation instead 

• This may serve a number of purposes, e.g., inspecting the model to better 
understand it, or just to have pretty/weird pictures to look at 

• One general way to do this is to perform generation by optimization 

• Define a loss function that quantifies what image we wish to generate 

• Keep the network parameters fixed! I.e., freeze the network weights 

• Backpropagate the loss to the input image in order to update it
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Style transfer, illustrated
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ℓ(v) = ?

• We will actually use a “two-dimensional”  which is the 
output of an intermediate conv layer 

• The first dimension is channels, the second dimension is 
height and width combined
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The content of an image

• If we have a content image and we only wish to generate an image with the same content from 
our CNN, how might we do this? 

• The idea is to define a loss function that measures the difference between intermediate CNN 
activations when inputting the generated vs. content image 

• , where  represents the activations from inputting the content image 
 
 
 
 
 

ℓc(v) = 1
2 ∑ij

(vij − cij)2 c
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The style of an image?

• To quantify style or “texture”, we compute correlations between the different 
channels of  via the Gram matrix  

•  — like an unnormalized covariance estimate 

• Surprising, but true: matching this Gram matrix matches styles, roughly speaking 

• , where  represents the Gram matrix computed 
from the activations resulting from inputting the style image

v G
Gij = ∑k

vikvjk

ℓs(v) ∝ ∑ij
(Gij − Gs

ij)2 Gs
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The style of an image?

• Different activations of the network can capture different “levels of abstraction” 
for the style of the image 

• Therefore, unlike content matching, the style loss component operates on 
multiple intermediate activations of the CNN with different weights 

• The final loss function is  — the authors use ℓ = αℓc + βℓs α/β = 10−3
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Merging content with style
Try it yourself: https://deepart.io/
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Recurrent neural networks
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Problem setup

• We now consider settings in which our features  represent sequential data which 
may be variable length 
 
 
 

• Our labels could be scalars , e.g., sentiment analysis, identification, … 

• Or the labels could be sequences ! E.g., translation, transcription, captioning, … 

• Or there could be no label at all! I.e., unsupervised learning / generative modeling

x

y
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Models for sequential data

• Markov / n-gram models, hidden Markov models (HMMs) 

• Embedding / clustering based methods 

• Convolutions (sometimes called “temporal” convolutions) 

• Recurrent neural networks (RNNs) — today 

• Long short-term memory (LSTMs), gated recurrent units (GRUs) 

• Transformers — in a couple of weeks
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Dealing with variable size (length) inputs

• Before, when dealing with images, we could reasonably assume fixed size inputs 

• Now, with sequential data, it is often the case that input lengths vary
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One input piece per layer?

• An idea: let’s feed in one piece of the input (sometimes called a token) per layer 

• The input to layer  is now l + 1 [a(l); x[l]]
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Recurrent networks: attempt #1
What are some problems with this approach?

• Problem #1: we need as many layers as the max number of tokens 

• Later layers hardly get trained, and we can’t generalize to longer sequences 

• Problem #2:  is missing the “previous layer output”a(1)
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Weight sharing

• Problem #1: we need as many layers as the max number of tokens 

• Later layers hardly get trained, and we can’t generalize to longer sequences 

• Solution: use the same parameters (weights) in every layer 

• This is an example of weight sharing 

• Before:  

• Now:  for all 

a(l+1) = σ (W(l+1) [a(l); x[l]] + b(l+1))
a(l+1) = σ (W [a(l); x[l]] + b) l
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RNNs: the first input

• Problem #2:  is missing the “previous layer output” 

• Solution: initialize some  independently from the input  to feed into 

a(1)

a(0) x a(1)
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Recurrent networks: attempt #2

• Important, and not visualized here:  for all  

• In many applications, we think of each  as a “time step” (denoted  instead) and 
each  as the “state” (or hidden state) at time step  (denoted  instead)

a(l+1) = σ (W [a(l); x[l]] + b) l

l t
a(l) l h(t)
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Sequential outputs

• This is what our RNN will look like for “sequence input, single output” 

• What about sequence output? Just have an output at every layer
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Different combinations of (non)sequential data

• Different applications will give rise to different ways in which we use RNNs 

• Match the following applications to the diagrams below that they correspond to: 
image captioning, text sentiment analysis, language translation, text generation
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Generating outputs from RNNs

• Generating a sequential output from an RNN, e.g., to caption an input image, is done in 
an autoregressive manner 

• This makes it possible for the RNN to condition on what it has already generated
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The problem with training RNNs

what is the gradient of the final loss with respect to ? (similar story for )W b
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Fixing exploding and vanishing gradients

• We want to avoid gradients that explode or vanish as they travel backwards 
through the network 

• Exploding gradients are an easier problem: we can just clip the gradients 

• Vanishing gradients seem to require clever architecture choices 

• We have already seen the basic idea behind fixing this issue: skip connections! 

• Let’s detail one RNN architecture that employs the same basic principle  

• It’s not quite skip connections, but the intuition is similar — this architecture, 
known as the LSTM, far precedes the modern popularity of skip connections
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Long short-term memory (LSTM)
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Bidirectional RNN models

• Often, it can be useful to incorporate information from “the future”, if available 

• E.g., speech transcription, contextual word representations, … 

• For these applications, one option is to essentially learn two RNNs! One which 
processes the sequence forwards, and the other which processes in reverse 

• But, the RNNs are learned jointly to produce a single prediction/representation 

• For a while, bidirectional LSTMs were the best model for learning language 
representations that could be fine tuned for a variety of downstream tasks 

• Nowadays, the best model is the transformer — stay tuned for that
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