
2022/02/23

Lecture 10: Recurrent networks
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• The bulk of today’s lecture will cover a class of models known as recurrent
neural networks (RNNs), which were designed to process sequential data

• However, we will first wrap up our discussion of image data with one final cool
application: style transfer

• Together, this material should be sufficient for working on HW2

• HW2 also covers some network visualization topics that we won’t discuss in
lecture, though these topics are well explained by the assignment itself

2

Style transfer
(some images borrowed from Stanford CS231n)
(some images borrowed from the original paper, Gatys et al 2016)

3

Generating images from CNNs

• Suppose you have a CNN trained to do image classification, and you wish to use
the CNN to do image generation instead

• This may serve a number of purposes, e.g., inspecting the model to better
understand it, or just to have pretty/weird pictures to look at

• One general way to do this is to perform generation by optimization

• Define a loss function that quantifies what image we wish to generate

• Keep the network parameters fixed! I.e., freeze the network weights

• Backpropagate the loss to the input image in order to update it
4

x

Style transfer, illustrated

5

“style” image

“content” image

CNN

v

ℓ(v) = ?

• We will actually use a “two-dimensional” which is the
output of an intermediate conv layer

• The first dimension is channels, the second dimension is
height and width combined

v

The content of an image

• If we have a content image and we only wish to generate an image with the same content from
our CNN, how might we do this?

• The idea is to define a loss function that measures the difference between intermediate CNN
activations when inputting the generated vs. content image

• , where represents the activations from inputting the content image

ℓc(v) = 1
2 ∑ij

(vij − cij)2 c

6

The style of an image?

• To quantify style or “texture”, we compute correlations between the different
channels of via the Gram matrix

• — like an unnormalized covariance estimate

• Surprising, but true: matching this Gram matrix matches styles, roughly speaking

• , where represents the Gram matrix computed
from the activations resulting from inputting the style image

v G
Gij = ∑k

vikvjk

ℓs(v) ∝ ∑ij
(Gij − Gs

ij)2 Gs

7

The style of an image?

• Different activations of the network can capture different “levels of abstraction”
for the style of the image

• Therefore, unlike content matching, the style loss component operates on
multiple intermediate activations of the CNN with different weights

• The final loss function is — the authors use ℓ = αℓc + βℓs α/β = 10−3

8

Merging content with style
Try it yourself: https://deepart.io/

9

https://deepart.io/

Recurrent neural networks

10

Problem setup

• We now consider settings in which our features represent sequential data which
may be variable length

• Our labels could be scalars , e.g., sentiment analysis, identification, …

• Or the labels could be sequences ! E.g., translation, transcription, captioning, …

• Or there could be no label at all! I.e., unsupervised learning / generative modeling

x

y

y

11

Models for sequential data

• Markov / n-gram models, hidden Markov models (HMMs)

• Embedding / clustering based methods

• Convolutions (sometimes called “temporal” convolutions)

• Recurrent neural networks (RNNs) — today

• Long short-term memory (LSTMs), gated recurrent units (GRUs)

• Transformers — in a couple of weeks

12

Dealing with variable size (length) inputs

• Before, when dealing with images, we could reasonably assume fixed size inputs

• Now, with sequential data, it is often the case that input lengths vary

13

: [“I”, “love”, “dogs”]x1 : [“my”, “dog”, “ate”, “my”, “homework”]x2

softmax

x a(2)

…

a(1) a(L) z

One input piece per layer?

• An idea: let’s feed in one piece of the input (sometimes called a token) per layer

• The input to layer is now l + 1 [a(l); x[l]]

14

x

softmax

a(2)

…

a(1) a(L) z

“my” “dog” “homework”

Recurrent networks: attempt #1
What are some problems with this approach?

• Problem #1: we need as many layers as the max number of tokens

• Later layers hardly get trained, and we can’t generalize to longer sequences

• Problem #2: is missing the “previous layer output”a(1)

15

softmax

a(2)

…

a(1) a(L) z

“my” “dog” “homework”

Weight sharing

• Problem #1: we need as many layers as the max number of tokens

• Later layers hardly get trained, and we can’t generalize to longer sequences

• Solution: use the same parameters (weights) in every layer

• This is an example of weight sharing

• Before:

• Now: for all

a(l+1) = σ (W(l+1) [a(l); x[l]] + b(l+1))
a(l+1) = σ (W [a(l); x[l]] + b) l

16

RNNs: the first input

• Problem #2: is missing the “previous layer output”

• Solution: initialize some independently from the input to feed into

a(1)

a(0) x a(1)

17

softmax

a(2)

…

a(1) a(L) z

“my” “dog” “homework”

a(0)

Recurrent networks: attempt #2

• Important, and not visualized here: for all

• In many applications, we think of each as a “time step” (denoted instead) and
each as the “state” (or hidden state) at time step (denoted instead)

a(l+1) = σ (W [a(l); x[l]] + b) l

l t
a(l) l h(t)

18

softmax

a(2)

…

a(1) a(L) z

“my” “dog” “homework”

a(0)

Sequential outputs

• This is what our RNN will look like for “sequence input, single output”

• What about sequence output? Just have an output at every layer

19

softmax

za(2)

…

a(1) a(L)

“my” “dog” “homework”

a(0)

z(1)

softmax

z(2)

softmax

z(L)

softmax…

Different combinations of (non)sequential data

• Different applications will give rise to different ways in which we use RNNs

• Match the following applications to the diagrams below that they correspond to:
image captioning, text sentiment analysis, language translation, text generation

20

Generating outputs from RNNs

• Generating a sequential output from an RNN, e.g., to caption an input image, is done in
an autoregressive manner

• This makes it possible for the RNN to condition on what it has already generated
21

<start>

a(2)

…

a(L)a(1)

z(1)

softmax

z(2)

softmax

z(L)

softmax

a(0)

“a” “good” “boy”

The problem with training RNNs

what is the gradient of the final loss with respect to ? (similar story for)W b

22

ie
w

die
very easy forthis term to be

too small large

Fixing exploding and vanishing gradients

• We want to avoid gradients that explode or vanish as they travel backwards
through the network

• Exploding gradients are an easier problem: we can just clip the gradients

• Vanishing gradients seem to require clever architecture choices

• We have already seen the basic idea behind fixing this issue: skip connections!

• Let’s detail one RNN architecture that employs the same basic principle

• It’s not quite skip connections, but the intuition is similar — this architecture,
known as the LSTM, far precedes the modern popularity of skip connections

23

Long short-term memory (LSTM)

24

du de
Cl o

o

al split gate
input

gate
alt

he

Web
output gate

net

x

Wis 4dax dutdx bis 4dm

Bidirectional RNN models

• Often, it can be useful to incorporate information from “the future”, if available

• E.g., speech transcription, contextual word representations, …

• For these applications, one option is to essentially learn two RNNs! One which
processes the sequence forwards, and the other which processes in reverse

• But, the RNNs are learned jointly to produce a single prediction/representation

• For a while, bidirectional LSTMs were the best model for learning language
representations that could be fine tuned for a variety of downstream tasks

• Nowadays, the best model is the transformer — stay tuned for that
25

