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Today’s lecture

* The bulk of today’s lecture will cover a class of models known as recurrent
neural networks (RNNs), which were designed to process sequential data

* However, we will first wrap up our discussion of image data with one final cool
application: style transfer

e Jogether, this material should be sufficient for working on HW2

e HW2 also covers some network visualization topics that we won’t discuss in
lecture, though these topics are well explained by the assignment itself



Style transfer

(some images borrowed from Stanford CS231n)
(some images borrowed from the original paper, Gatys et al 2016)



Generating images from CNNs

e Suppose you have a CNN trained to do image classification, and you wish to use
the CNN to do image generation instead

e This may serve a number of purposes, e.g., inspecting the model to better
understand it, or just to have pretty/weird pictures to look at

e One general way to do this is to perform generation by optimization
e Define a loss function that quantifies what image we wish to generate
o Keep the network parameters fixed! |.e., freeze the network weights

e Backpropagate the loss to the input image in order to update it
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Style transfer, illustrated

“style” image

L

e We will actually use a “two-dimensional” v which is the
output of an intermediate conv layer

e The first dimension is channels, the second dimension is
height and width combined
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The content of an image

* |f we have a content image and we only wish to generate an image with the same content from
our CNN, how might we do this?

* The idea is to define a loss function that measures the difference between intermediate CNN
activations when inputting the generated vs. content image

1
o L (V) = 5 2 ) (vij — cl-j)z, where € represents the activations from inputting the content image
i




The style of an image”?

e o quantify style or “texture”, we compute correlations between the different
channels of v via the Gram matrix G

o Gl-]- - Zk"ik"jk — like an unnormalized covariance estimate

e Surprising, but true: matching this Gram matrix matches styles, roughly speaking

o Lo(V) x le (G — Glsj)z, where G® represents the Gram matrix computed

from the activations resulting from inputting the style image



The style of an image”?

)

e Different activations of the network can capture different “levels of abstraction’
for the style of the image

* Therefore, unlike content matching, the style loss component operates on
multiple intermediate activations of the CNN with different weights

e The final loss function is £ = af + s — the authors use a/f = 107




Merging content with style
Try it yourself: https://deepart.io/



https://deepart.io/

Recurrent neural networks



Problem setup

We now consider settings in which our features X represent sequential data which
may be variable length

It was the best of
times, it was the worst
of times, it was the age
of wisdom, it was the
age of foolishness...

Our labels could be scalars y, e.g., sentiment analysis, identification, ...

Or the labels could be sequences y! E.g., translation, transcription, captioning, ...

Or there could be no label at all! I.e., unsupervised learning / generative modeling
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Models for sequential data

Markov / n-gram models, hidden Markov models (HMMs)

Embedding / clustering based methods

Convolutions (sometimes called “temporal” convolutions)

Recurrent neural networks (RNNs) — today

e | ong short-term memory (LSTMs), gated recurrent units (GRUS)

Transformers — in a couple of weeks
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Dealing with variable size (length) inputs

e Before, when dealing with images, we could reasonably assume fixed size inputs

e Now, with sequential data, it is often the case that input lengths vary
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II, \\loveII, \\dOgSII:I X2: [\\myII, \\dOgII, \\ateII, \\my//, \\homeworkll]
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One input piece per layer?

e Anidea: let’s feed in one piece of the input (sometimes called a token) per layer

e The input to layer [ + 1 is now [a(l);x[l]]

X al a® a') z
f f f

\\my// \\dog// \\homework//
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Recurrent networks: attempt #1

What are some problems with this approach?

a() e aD) .
\\myll \\dOgII \\homeworkll

e Problem #1: we need as many layers as the max number of tokens

e |ater layers hardly get trained, and we can’t generalize to longer sequences

e Problem #2: all) is missing the “previous layer output”
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Weight sharing

Problem #1: we need as many layers as the max number of tokens

e |ater layers hardly get trained, and we can’t generalize to longer sequences

Solution: use the same parameters (weights) in every layer

e This is an example of weight sharing

Before: al*™D) = & (W(H‘l) [a(l); X[l]] 4 b(l+1))

Now: al*tD) = & (W [a(l); X[l]] + b) for all
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RNNs: the first input

o Problem #2: all s missing the “previous layer output”

« Solution: initialize some a'¥ independently from the input X to feed into a(l)

q(0) a() e a(D) .
t t t

\\my// \\dog// \\homework//
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Recurrent networks: attempt #2

a0 a() Ne a®

Z
t t t
“my” “dog” “homework”

o Important, and not visualized here: a*!) = & (W [a(l); X[l]] + b) for all /

e In many applications, we think of each [ as a “time step” (denoted ¢ instead) and
each a'¥) as the “state” (or hidden state) at time step [ (denoted h® instead)
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Sequential outputs

e e 2L

| ai/I ai/ ai/ i
f f f

\\my// \\dog// \\homework//

e This is what our RNN will look like for “sequence input, single output”

e \What about sequence output? Just have an output at every layer
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Different combinations of (non)seguential data

e Different applications will give rise to different ways in which we use RNNs

* Match the following applications to the diagrams below that they correspond to:
Image captioning, text sentiment analysis, language translation, text generation

one to one one to many many to one many to many many to many
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Generating outputs from RNNSs

Z(l) Z(2> Z(L)
a®) ai/ .' ai/ .' a(IL/
<start> “a” good” “boy

e Generating a sequential output from an RNN, e.g., to caption an input image, is done in
an autoregressive manner

* This makes it possible for the RNN to condition on what it has already generated
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The problem with training RNNs
==

what is the gradient of the final loss with respect to W? (similar story for b)
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FIxing exploding and vanishing gradients

* We want to avoid gradients that explode or vanish as they travel backwards
through the network

e Exploding gradients are an easier problem: we can just clip the gradients

e Vanishing gradients seem to require clever architecture choices
* \We have already seen the basic idea behind fixing this issue: skip connections!
e |et’s detail one RNN architecture that employs the same basic principle

e |t’s not quite skip connections, but the intuition is similar — this architecture,
known as the LSTM, far precedes the modern popularity of skip connections
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Long short-term memory (LSTM)
- (dhz“c)

(Wis 4di x (dutdy), b is ddy,)



Bidirectional RNN models

e Often, it can be useful to incorporate information from “the future”, if available
e E.g., speech transcription, contextual word representations, ...

e For these applications, one option is to essentially learn two RNNs! One which
processes the sequence forwards, and the other which processes in reverse

e But, the RNNSs are learned jointly to produce a single prediction/representation

e For a while, bidirectional LSTMs were the best model for learning language
representations that could be fine tuned for a variety of downstream tasks

 Nowadays, the best model is the transformer — stay tuned for that
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