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Lecture 7: 
Neural network building blocks
CS 182/282A (“Deep Learning”)
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Today’s lecture

• Today’s lecture is the “collected wisdom” of techniques, tips, and tricks for how 
to build and train the best neural networks 

• We focus on techniques that have “stood the test of time” 

• Normalization, activations, weight initialization, hyperparameter optimization, … 

• Nevertheless, new and better techniques are introduced all the time 

• The best deep learning practitioners and researchers typically are also the best 
at keeping up with the latest trends
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Standardization and normalization
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Some motivation for input standardization

• Suppose the input  is 2D and  is usually much larger than  — what could go wrong? 

• Adjusting the part of  corresponding to  may have a bigger effect on the loss 

• We saw that momentum and Adam can suffer less from issues like oscillation 

• Compared to vanilla gradient based optimization 

• Nevertheless, standardization of the input dimensions 
is typically an important preprocessing step and 
never hurts performance 

• Think of it like helping to “circularize” the loss landscape

x x1 x2

θ x2

4



Input standardization

• Input standardization is carried out for each dimension of the input separately 

• For each training input, for each dimension , we subtract the mean 

 and divide by  

• There are some variations on this, e.g., this is usually done per channel for image 
inputs rather than per dimension 

• And for discrete inputs, such as in language, this is typically not done at all
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A few more comments on standardization

• The far more common (but incorrect) term for standardization is normalization 

• For the rest of this lecture and beyond, we will use this term instead 

• Beyond normalizing inputs, outputs are often also normalized if they are 
continuous values (but not if they are discrete values such as labels) 

• Just like normalizing inputs, think of it like “circularizing” the loss landscape 

• Maybe we can also consider… normalizing intermediate activations  or ? 

• What might be trickier about this?

z(l) a(l)
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Normalizing intermediate activations

• Activations change throughout the course of training! 

• This means that we have to recompute these normalization statistics (  and ) 
every time we update our neural network parameters 

• And it would be prohibitively expensive to recompute using all the training data 

• Let’s discuss the two most commonly used methods for normalizing activations 
that get around this issue by using only mini batches or single data points 

• These are batch normalization (BN) and layer normalization (LN), 
respectively

μd σd
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Batch normalization (BN)

• Consider normalizing the intermediate activation  (same story for ) 

• Recall that, during training, we use mini batches of  data points for each update 

• We can compute the per dimension mean and standard deviation of  using 
just this mini batch, rather than the entire training set 

• This should be a good approximation for large enough  and if the points in 
the mini batch are sampled i.i.d. (they’re not, but close enough) 

• BN refers to normalizing  using these mini batch statistics
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The BN “layer”

• Typically, we normalize either the  or the , but not both 

• We can think of this as putting a BN “layer” either before or after the nonlinearity 

• Both choices usually work, it is usually easy enough to try both 

• The BN layer also includes one more thing: learnable scale and shift parameters 

• That is, after normalization, we multiply each dimension by  and add  

• This is done so that the neural network doesn’t lose expressivity — if needed, 
it could even learn to undo the normalization!

z(l) a(l)
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BN: training vs. testing

• Models with BN layers operate in two different modes: “train” vs. “test” or “eval” 

• These are used during training and testing time, as the names suggest 

• Train mode is what has been described — compute statistics using the mini batch 

• Eval mode instead uses the average statistics computed during train time 

• That is, we additionally maintain an exponential running average of the normalization 
statistics during model training, for use at test time 

• This is important if, e.g., we only are able to see one test point at a time 

• Otherwise, the normalization, scaling, and shifting work identically in both modes
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The pros and cons of BN

• BN enables higher learning rates and therefore faster training 

• BN fixes many of the training stability issues that people used to worry about 

• Before BN, this course would have talked a lot more about these issues 

• But BN also requires a large enough  for a good estimate of the statistics 

• It’s also kind of weird that the model works differently for training vs. testing… 

• It’s also kind of weird, at training time, for the model’s predictions on a data point 
to depend on the other points in the mini batch…

B
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Layer normalization (LN)

• LN is a different normalization approach that does not use mini batch information 

• So it operates on single data points, and it is identical at training vs. test time 

• LN is basically the “transpose” of BN: compute the mean and standard deviation 
of  across the feature dimensions, rather than per dimension 

• Now, each data point will have different normalization statistics, but these 
statistics are shared across dimensions 

• We still have learnable scale and shift parameters that are applied after the 
normalization step, to produce the final output of the LN layer

z(l)
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Network architecture choices
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Nonlinearities — rectified linear units (ReLUs)

•  

• Therefore,  

• A very common choice for hidden layer activations 

• “Gates” inputs based on their sign 

• May be suboptimal because, for negative values, 
the gradient provides no update direction

ReLU(v) = max{0, v} = v ⊙ 1[v > 0]

∇vReLU(v) = diag(1[v > 0])
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Nonlinearities — sigmoid

•  

• Along with , has really fallen out of favor as 
a hidden layer activation 

• Why? Very small gradient values for large inputs 

•  

• Used as the output “activation” for binary classification

sigmoid(v) =
1

1 + exp{−v}
=

exp{v}
exp{v} + 1

tanh

∇vsigmoid(v) = diag(sigmoid(v) ⊙ (1 − sigmoid(v)))
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Nonlinearities — Gaussian error linear units
GELUs (and friends)

• Both s and s have gradient issues 

• Another function that sidesteps some of these 
issues is the Gaussian error linear unit (GELU) 

 

•  evaluates the CDF of  element wise 

• Closely related to other functions that pass the input through a “soft gate” — 
e.g.,  is quite similar (sometimes called  or )

ReLU sigmoid

GELU(v) = v ⊙ Φ(v)

Φ 𝒩(0, 1)

v ⊙ sigmoid(v) SiLU swish
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Comparing these nonlinearities

• Both  and  are non negative and 
monotonically non decreasing 

•  and  are smooth, which is sometimes 
important from an optimization perspective 

•  is historically an important activation but 
is rarely the only nonlinearity used in today’s 
neural networks

sigmoid ReLU

sigmoid GELU

sigmoid
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Skip connections

• Basically every state-of-the-art neural network uses skip connections 

• Very simple high level idea: , rather than just  

• This idea was popularized by residual 
convolutional networks (ResNets) 

• Allowed for training much deeper, 
more performant models 

• The loss “landscape” of neural networks 
with residual connections looks much nicer

a(l) = σ(z(l)) + a(l−1) a(l) = σ(z(l))

18

Li et al, NIPS ’18 Li et al, NIPS ’18



Training considerations

19



Weight initialization
A thought exercise

• What should we initialize our neural network parameters (weights) to? This question is less important 
with the advent of BN and LN, but it is still interesting to think about 

• If  in each dimension , and we initialize each … 

• …then we get  

• Therefore, picking  gives us outputs similar in magnitude to the inputs 

• We can do this at every linear layer, i.e., initialize each  with variance inversely proportional to 
the input dimensionality to that layer 

• In practice: it’s slightly more complicated, but it’s done for you by deep learning libraries
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Dropout

• Often, dropout is applied to our model during training 

• The basic idea is very simple: randomly zero out some fraction  of the  

• Can implement as element wise multiplication of each  with a boolean mask 

• Dropout builds redundancies into the model, such that it doesn’t rely too much on 
any particular “pathways” through the network 

• Yet another example of inductive biases at work! 

• Some care should be taken to make training vs. test output magnitudes consistent

p Wij

W(l)
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Data augmentations, briefly
We’ll talk more about this topic later in the course

• For some problems, data augmentations are an indispensable part of training 

• E.g., for image classification: we apply random flips and crops to the images 

• This is useful for encoding invariances, e.g., flipping and 
cropping do not change the image class 

• Another inductive bias! 

• For some domains, such as natural language, it is harder 
to come up with good data augmentation schemes
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Neural network ensembles

• If you have enough compute, training multiple neural networks is often useful 

• Same concept as bagging for other machine learning models — an ensemble of 
models reduces variance and combats overfitting 

• Turns out, also very good at uncertainty quantification 

• In theory: create different bootstrap samples of the dataset to train the models 

• In practice for neural networks: just train them all on all of the data 

• In theory: when predicting, average all of their output probabilities together 

• In practice: just take a majority vote
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Hyperparameter optimization

• We briefly talked last lecture about tuning hyperparameters such as learning rate, 
momentum, regularization strength, etc. 

• Training loss helps diagnose underfitting, validation loss for overfitting 

• We are adding in even more hyperparameters to tune with this lecture! 

• Normalization, architecture choices (nonlinearities, skip connections), dropout, 
… 

• It is definitely daunting to try and tune all of these — here are some tips
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Hyperparameter optimization

• Typically, tuning hyperparameters goes from “coarse to fine” 

• E.g., first find the right order of magnitude for the learning rate, then zero in 

• Hyperparameter search can be done with randomly sampled values or in a grid 

• When grid searching, it is standard to space values evenly in log space 

• For example, to cover [0.001, 0.01] approximately evenly, use: 

• [0.001, 0.003, 0.01] if grid searching with three values 

• [0.001, 0.002, 0.005, 0.01] if grid searching with four values
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