| ecture 7
Neural network building blocks

CS 182/282A (“Deep Learning”)

2022/02/09

loday'’s lecture

e [oday's lecture Is the “collected wisdom™ of technigues, tips, and tricks for how
to build and train the best neural networks

e Ve focus on technigues that have “stood the test of time”
e Normalization, activations, weight initialization, hyperparameter optimization, ...
e Nevertheless, new and better techniques are introduced all the time

* [he best deep learning practitioners and researchers typically are also the best
at keeping up with the latest trends

Standardization and normalization

Some motivation for input standardization

e Suppose the input X is 2D and X, is usually much larger than x, — what could go wrong

e Adjusting the part of @ corresponding to x, may have a bigger effect on the loss

e \\e saw that momentum and Adam can suffer less from issues like oscillation

e Compared to vanilla gradient based optimization

e Nevertheless, standardization of the input dimensions
s typically an important preprocessing step and
never hurts performance

e Think of it like helping to “circularize” the loss landscape

INnput standardization

e |[nput standardization is carried out for each dimension of the input separately

e For each training input, for each dimension d, we subtract the mean

1 &
N Z X, and divide by 6, = |— Z (X7 — ﬂd)z
i=1 =1

Hag —

* [here are some variations on this, e.q., this is usually done per channel for image
INputs rather than per dimension

 And for discrete inputs, such as Iin language, this is typically not done at all

A few more comments on standardization

 The far more common (but incorrect) term for standardization is normalization
e For the rest of this lecture and beyond, we will use this term instead

e Beyond normalizing inputs, outputs are often also normalized if they are
continuous values (but not if they are discrete values such as labels)

e Just like normalizing inputs, think of it like “circularizing” the loss landscape

e Maybe we can also consider... normalizing intermediate activations 7z or a7

e \What might be trickier about this?

Normalizing intermediate activations

e Activations change throughout the course of training!

e [his means that we have to recompute these normalization statistics (4, and o)
every time we update our neural network parameters

 And it would be prohibitively expensive to recompute using all the training data

e | et’s discuss the two most commonly used methods for normalizing activations
that get around this issue by using only mini batches or single data points

e These are batch normalization (BN) and layer normalization (LN),
respectively

Batch normalization (BN)

e (Consider normalizing the intermediate activation 7\ (same story for a(l))
e Recall that, during training, we use mini batches of B data points for each update

e \We can compute the per dimension mean and standard deviation of z() using
just this mini batch, rather than the entire training set

e This should be a good approximation for large enough B and if the points in
the mini batch are sampled i.i.d. (they’re not, but close enough)

e BN refers to normalizing z() using these mini batch statistics

The BN “layer”

e [ypically, we normalize either the 7z or the a®¥ , but not both
e Ve can think of this as putting a BN “layer” either before or after the nonlinearity
e Both choices usually work, It Is usually easy enough to try both

 [he BN layer also includes one more thing: learnable scale and shift parameters

o That is, after normalization, we multiply each dimension by ¥, and add

e [hisis done so that the neural network doesn’t lose expressivity — If needed,
it could even learn to undo the normalization!

BN: training vs. testing

* Models with BN layers operate In two different modes: “train” vs. “test” or “eval’
* [hese are used during training and testing time, as the names suggest

* [rain mode is what has been described — compute statistics using the mini batch

* Eval mode instead uses the average statistics computed during train time

e [hatis, we additionally maintain an exponential running average of the normalization
statistics during model training, for use at test time

 [hisis important if, e.g., we only are able to see one test point at a time

o Otherwise, the normalization, scaling, and shifting work identically in lboth modes

10

1he pros and cons of BN

e BN enables higher learning rates and therefore faster training

e BN fixes many of the training stability issues that people used to worry about

e Before BN, this course would have talked a lot more about these Issues

e But BN also requires a large enough B for a good estimate of the statistics

e |t's also kind of weird that the model works differently for training vs. testing...

e |t's also kind of welird, at training time, for the

odel’s predictions on a data point

to depend on the other points in the mini batch...

11

L ayer normalization (LN)

[N iIs a different normalization approach that does not use mini batch information
e SO it operates on single data points, and it is identical at training vs. test time

e [N Is basically the “transpose” of BN: compute the mean and standard deviation
of z¥ across the feature dimensions, rather than per dimension

* Now, each data point will have different normalization statistics, but these
statistics are shared across dimensions

e \We still have learnable scale and shift parameters that are applied after the
normalization step, to produce the final output of the LN layer

12

Network architecture choices

Nonlinearities — rectified linear units (RelLLUs)

e ReLU(V) = max{0,v} =voO 1[v > 0] . ReLU (x- 1(x > 0))

1.5 -

o Therefore, V ReLU(v) = diag(1[v > 0])

1.0 4

e A very common choice for hidden layer activations os-

0.0

e “(Gates” inputs based on their sign

e May be suboptimal because, for negative values,
the gradient provides no update direction

14

Nonlinearities — sigmoid

| exp{v}

signoid(v) = ———@ = ——8
° ¥) Il +exp{—v} exp{v}+1

e Along with tanh, has really fallen out of favor as
a hidden layer activation

e \WWhy" Very small gradient values for large inputs

2.0 7

1.5 4

1.0 4

0.5+

0.0 4

-0.9 *

-1.0 +

Sigmoid (o(x) = (1 + e *)"1)

/

—

-3

Y Y L3 T 1
-2 -1 0 1 2

eV, sigmoid(v) = diag(sigmoid(v) ® (1 — sigmoid(v)))

15

Used as the output “activation” for binary classification

1
3

Nonlinearities — Gaussian error linear units

GELUs (and friends)

e Both RelLUs and sigmoids have gradient issues

 Another function that sidesteps some of these
issues is the Gaussian error linear unit (GELU)

GELU(V) = v O D(Vv)

e O evaluates the CDF of A/(0, 1) element wise

2.0

GELU (x - ®(x))

Lo 1

1.0 +

0.5 -

0.0 4

-0.5

R ———

-2

-1

o Closely related to other functions that pass the input through a
e.g., V ® sigmoid(Vv) is quite similar (sometimes called SiLU or swish)

16

‘soft gat

1

e” .

2

Comparing these nonlinearities

Activation Function Visualization

* Both sigmoid and ReLU are non negative and 20 T
monotonically non decreasing — GELU (x- ®(x)

1.5 4
— Sigmoid ((1 + e~*)"1)

e sigmoid and GELU are smooth, which is sometimes **
important from an optimization perspective 0.5

0.0

e sigmoid is historically an important activation but
s rarely the only nonlinearity used in today’s "3 2 1 o 1 2
neural networks

17

SKip connections

e Basically every state-of-the-art neural network uses skip connections

e Very simple high level idea: a®¥) = 6(z\") + a~V, rather than just a'¥) = 6(z")

 [his idea was popularized by residual
convolutional networks (ResNets)

e Allowed for training much deeper,
more performant models

e The loss “landscape” of neural networks S el RPS Hetal NIPS T8
with residual connections looks much nicer

18

Training considerations

Welght initialization

A thought exercise

e \What should we initialize our neural network parameters (weights) to”? This question is less important
with the advent of BN and LN, but it is still interesting to think about

o Ifx; ~ A (0, 1) in each dimension j, and we initialize each Wl(.].l) ~ N (0, 6‘%,)...

. ...then we get E[z7] = Z

ELWYIELS] = doy

1
= — gives us outputs similar in magnitude to the inputs

d

e \We can do this at every linear layer, i.e., initialize each WO with variance inversely proportional to
the input dimensionality to that layer

. |herefore, picking o

e |n practice: it’s slightly more complicated, but it's done for you by deep learning libraries

20

Dropout

o Often, dropout is applied to our model during training
e [he basic idea is very simple: randomly zero out some fraction p of the Wl-j

e Can implement as element wise multiplication of each WO with a boolean mask

e Dropout builds redundancies into the model, such that it doesn’t rely too much on
any particular “pathways” through the network

e Yet another example of inductive biases at work!

e Some care should be taken to make training vs. test output magnitudes consistent

21

Data augmentations, briefly

We'll talk more about this topic later in the course

e For some problems, data augmentations are an indispensable part of training

e E£.g., for mage classification: we apply random flips and crops to the images

* Thisis useful for encoding invariances, €.g., flipping and
cropping do not change the image class

e Another inductive bias!

e For some domains, such as natural language, it is harder
to come up with good data augmentation schemes

22

https://neptune.ai/blog/data-augmentation-in-python

Neural network ensembles

e [f you have enough compute, training multiple neural networks Is often useful

e Same concept as bagging for other machine learning models — an ensemble of
models reduces variance and combats overfitting

e [urns out, also very good at uncertainty quantification

* |n theory: create different bootstrap samples of the dataset to train the models
* |n practice for neural networks: just train them all on all of the data

* |n theory: when predicting, average all of their output probabilities together

* |n practice: just take a majority vote

23

Hyperparameter optimization

e \We briefly talked last lecture about tuning hyperparameters such as learning rate,
momentum, regularization strength, etc.

* [raining loss helps diagnose underfitting, validation loss for overfitting
e \We are adding in even more hyperparameters to tune with this lecture!

e Normalization, architecture choices (nonlinearities, skip connections), dropout,

e [tis definitely daunting to try and tune all of these — here are some tips

24

Hyperparameter optimization

e [ypically, tuning hyperparameters goes from “coarse to fine”
e E.g., first find the right order of magnitude for the learning rate, then zero In
e Hyperparameter search can be done with randomly sampled values or in a grid
 \When grid searching, 1t Is standard to space values evenly In log space
e For example, to cover [0.001, 0.01] approximately evenly, use:
e [0.001, 0.003, 0.01] if grid searching with three values
e [0.001, 0.002, 0.005, 0.01] if grid searching with four values

25

