
2022/02/09

Lecture 7:
Neural network building blocks
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• Today’s lecture is the “collected wisdom” of techniques, tips, and tricks for how
to build and train the best neural networks

• We focus on techniques that have “stood the test of time”

• Normalization, activations, weight initialization, hyperparameter optimization, …

• Nevertheless, new and better techniques are introduced all the time

• The best deep learning practitioners and researchers typically are also the best
at keeping up with the latest trends

2

Standardization and normalization

3

Some motivation for input standardization

• Suppose the input is 2D and is usually much larger than — what could go wrong?

• Adjusting the part of corresponding to may have a bigger effect on the loss

• We saw that momentum and Adam can suffer less from issues like oscillation

• Compared to vanilla gradient based optimization

• Nevertheless, standardization of the input dimensions
is typically an important preprocessing step and
never hurts performance

• Think of it like helping to “circularize” the loss landscape

x x1 x2

θ x2

4

Input standardization

• Input standardization is carried out for each dimension of the input separately

• For each training input, for each dimension , we subtract the mean

 and divide by

• There are some variations on this, e.g., this is usually done per channel for image
inputs rather than per dimension

• And for discrete inputs, such as in language, this is typically not done at all

d

μd =
1
N

N

∑
i=1

xd σd =
1
N

N

∑
i=1

(xd − μd)2

5

A few more comments on standardization

• The far more common (but incorrect) term for standardization is normalization

• For the rest of this lecture and beyond, we will use this term instead

• Beyond normalizing inputs, outputs are often also normalized if they are
continuous values (but not if they are discrete values such as labels)

• Just like normalizing inputs, think of it like “circularizing” the loss landscape

• Maybe we can also consider… normalizing intermediate activations or ?

• What might be trickier about this?

z(l) a(l)

6

Normalizing intermediate activations

• Activations change throughout the course of training!

• This means that we have to recompute these normalization statistics (and)
every time we update our neural network parameters

• And it would be prohibitively expensive to recompute using all the training data

• Let’s discuss the two most commonly used methods for normalizing activations
that get around this issue by using only mini batches or single data points

• These are batch normalization (BN) and layer normalization (LN),
respectively

μd σd

7

Batch normalization (BN)

• Consider normalizing the intermediate activation (same story for)

• Recall that, during training, we use mini batches of data points for each update

• We can compute the per dimension mean and standard deviation of using
just this mini batch, rather than the entire training set

• This should be a good approximation for large enough and if the points in
the mini batch are sampled i.i.d. (they’re not, but close enough)

• BN refers to normalizing using these mini batch statistics

z(l) a(l)

B

z(l)

B

z(l)

8

The BN “layer”

• Typically, we normalize either the or the , but not both

• We can think of this as putting a BN “layer” either before or after the nonlinearity

• Both choices usually work, it is usually easy enough to try both

• The BN layer also includes one more thing: learnable scale and shift parameters

• That is, after normalization, we multiply each dimension by and add

• This is done so that the neural network doesn’t lose expressivity — if needed,
it could even learn to undo the normalization!

z(l) a(l)

γd βd

9

BN: training vs. testing

• Models with BN layers operate in two different modes: “train” vs. “test” or “eval”

• These are used during training and testing time, as the names suggest

• Train mode is what has been described — compute statistics using the mini batch

• Eval mode instead uses the average statistics computed during train time

• That is, we additionally maintain an exponential running average of the normalization
statistics during model training, for use at test time

• This is important if, e.g., we only are able to see one test point at a time

• Otherwise, the normalization, scaling, and shifting work identically in both modes

10

The pros and cons of BN

• BN enables higher learning rates and therefore faster training

• BN fixes many of the training stability issues that people used to worry about

• Before BN, this course would have talked a lot more about these issues

• But BN also requires a large enough for a good estimate of the statistics

• It’s also kind of weird that the model works differently for training vs. testing…

• It’s also kind of weird, at training time, for the model’s predictions on a data point
to depend on the other points in the mini batch…

B

11

Layer normalization (LN)

• LN is a different normalization approach that does not use mini batch information

• So it operates on single data points, and it is identical at training vs. test time

• LN is basically the “transpose” of BN: compute the mean and standard deviation
of across the feature dimensions, rather than per dimension

• Now, each data point will have different normalization statistics, but these
statistics are shared across dimensions

• We still have learnable scale and shift parameters that are applied after the
normalization step, to produce the final output of the LN layer

z(l)

12

Network architecture choices

13

Nonlinearities — rectified linear units (ReLUs)

•

• Therefore,

• A very common choice for hidden layer activations

• “Gates” inputs based on their sign

• May be suboptimal because, for negative values,
the gradient provides no update direction

ReLU(v) = max{0, v} = v ⊙ 1[v > 0]

∇vReLU(v) = diag(1[v > 0])

14

Nonlinearities — sigmoid

•

• Along with , has really fallen out of favor as
a hidden layer activation

• Why? Very small gradient values for large inputs

•

• Used as the output “activation” for binary classification

sigmoid(v) =
1

1 + exp{−v}
=

exp{v}
exp{v} + 1

tanh

∇vsigmoid(v) = diag(sigmoid(v) ⊙ (1 − sigmoid(v)))

15

Nonlinearities — Gaussian error linear units
GELUs (and friends)

• Both s and s have gradient issues

• Another function that sidesteps some of these
issues is the Gaussian error linear unit (GELU)

• evaluates the CDF of element wise

• Closely related to other functions that pass the input through a “soft gate” —
e.g., is quite similar (sometimes called or)

ReLU sigmoid

GELU(v) = v ⊙ Φ(v)

Φ 𝒩(0, 1)

v ⊙ sigmoid(v) SiLU swish

16

Comparing these nonlinearities

• Both and are non negative and
monotonically non decreasing

• and are smooth, which is sometimes
important from an optimization perspective

• is historically an important activation but
is rarely the only nonlinearity used in today’s
neural networks

sigmoid ReLU

sigmoid GELU

sigmoid

17

Skip connections

• Basically every state-of-the-art neural network uses skip connections

• Very simple high level idea: , rather than just

• This idea was popularized by residual
convolutional networks (ResNets)

• Allowed for training much deeper,
more performant models

• The loss “landscape” of neural networks
with residual connections looks much nicer

a(l) = σ(z(l)) + a(l−1) a(l) = σ(z(l))

18

Li et al, NIPS ’18 Li et al, NIPS ’18

Training considerations

19

Weight initialization
A thought exercise

• What should we initialize our neural network parameters (weights) to? This question is less important
with the advent of BN and LN, but it is still interesting to think about

• If in each dimension , and we initialize each …

• …then we get

• Therefore, picking gives us outputs similar in magnitude to the inputs

• We can do this at every linear layer, i.e., initialize each with variance inversely proportional to
the input dimensionality to that layer

• In practice: it’s slightly more complicated, but it’s done for you by deep learning libraries

xj ∼ 𝒩(0, 1) j W(1)
ij ∼ 𝒩(0, σ2

W)

𝔼[z2
i] = ∑j

𝔼[(W(1)
ij)2]𝔼[x2

j] = dσ2
W

σ2
W =

1
d

W(l)

20

Dropout

• Often, dropout is applied to our model during training

• The basic idea is very simple: randomly zero out some fraction of the

• Can implement as element wise multiplication of each with a boolean mask

• Dropout builds redundancies into the model, such that it doesn’t rely too much on
any particular “pathways” through the network

• Yet another example of inductive biases at work!

• Some care should be taken to make training vs. test output magnitudes consistent

p Wij

W(l)

21

Data augmentations, briefly
We’ll talk more about this topic later in the course

• For some problems, data augmentations are an indispensable part of training

• E.g., for image classification: we apply random flips and crops to the images

• This is useful for encoding invariances, e.g., flipping and
cropping do not change the image class

• Another inductive bias!

• For some domains, such as natural language, it is harder
to come up with good data augmentation schemes

22

https://neptune.ai/blog/data-augmentation-in-python

https://neptune.ai/blog/data-augmentation-in-python

Neural network ensembles

• If you have enough compute, training multiple neural networks is often useful

• Same concept as bagging for other machine learning models — an ensemble of
models reduces variance and combats overfitting

• Turns out, also very good at uncertainty quantification

• In theory: create different bootstrap samples of the dataset to train the models

• In practice for neural networks: just train them all on all of the data

• In theory: when predicting, average all of their output probabilities together

• In practice: just take a majority vote

23

Hyperparameter optimization

• We briefly talked last lecture about tuning hyperparameters such as learning rate,
momentum, regularization strength, etc.

• Training loss helps diagnose underfitting, validation loss for overfitting

• We are adding in even more hyperparameters to tune with this lecture!

• Normalization, architecture choices (nonlinearities, skip connections), dropout,
…

• It is definitely daunting to try and tune all of these — here are some tips

24

Hyperparameter optimization

• Typically, tuning hyperparameters goes from “coarse to fine”

• E.g., first find the right order of magnitude for the learning rate, then zero in

• Hyperparameter search can be done with randomly sampled values or in a grid

• When grid searching, it is standard to space values evenly in log space

• For example, to cover [0.001, 0.01] approximately evenly, use:

• [0.001, 0.003, 0.01] if grid searching with three values

• [0.001, 0.002, 0.005, 0.01] if grid searching with four values

25

