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Lecture 6: Optimization
CS 182/282A (“Deep Learning”)
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Today’s lecture

• So far in lecture, we have built up a simple neural network model, and we have 
defined our negative log likelihood (cross-entropy) loss function 

• We saw last week two different ways to think about computing gradients of the 
loss function with respect to the model parameters: backprop and autodiff 

• We have also seen the basic idea behind gradient based optimization 

• Today, we will complete our story on optimization, flesh out gradient based 
optimization in detail, and describe how neural networks are trained in practice
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A hand-wavy overview of optimization
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Remember: gradient based optimization

• Deep learning relies on iterative optimization to find good parameters 

• Starting from an initial “guess”, continually refine that guess until we are satisfied 
with our final answer 

• By far the most commonly used set of iterative optimization techniques in deep 
learning is (first order) gradient based optimization and variants thereof 

• Move the parameters in the direction of the negative gradient of the average loss: 

 — we refer to  as a step size or learning rateθ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) α
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Visualizing losses and optimization

• Optimization is hard to visualize for any more than two parameters 

• But neural networks have thousands, millions, billions of parameters… 

• For visualization purposes, we will pretend they have two 

• Some works have explored interesting ways to visualize loss “landscapes”
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Visualizing gradient descent
https://distill.pub/2017/momentum/
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What’s going on with gradient descent?
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So… optimization is really hard?

• Even for the previous convex, well conditioned optimization problem, we are not 
blown away by gradient descent’s performance 

• Do we really have any hope of applying this to train neural networks?
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What makes neural network training possible?

• Do we really have any hope of using gradient descent to train neural networks? 

• Yes! Because of a few reasons: 

• We have methods that work better than vanilla gradient descent 

• Some neural network architectures result in 
easier optimization — a topic for future lectures 

• In practice, we don’t really care about reaching 
the global optimum 

• Actually, we don’t really care about reaching any optimum…
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An aside: critical points

• Critical points, in our setting, occur when  

• The global optimum is a critical point, but critical points could also be: 

• A local optimum! Turns out, though, that these are often quite good too 

• A plateau or saddle point! Turns out that we don’t really worry about these 

• For neural network training, we have bigger practical concerns than what type of 
critical point we have reached — we don’t usually reach one in the first place!

∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) = 0
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Practical neural network training
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Stochastic optimization
Or “stochastic gradient descent (SGD)”, colloquially

• Computing  every iteration for large  (think 1 million) is a bad idea 

• Instead, we pick a batch size (or mini batch size) , we randomly sample 

 from the training data, and we compute  

• Sampling the mini batch i.i.d. is rather slow due to random memory accesses 

• Instead, we shuffle the dataset and construct mini batches from consecutive data points 

• After each pass on the training data (called an epoch), we reshuffle

∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) N

B ≪ N
{(x1, y1), …, (xB, yB)} ∇θ

1
B

B

∑
i=1

ℓ(θ; xi, yi)
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Learning rates and learning curves

• Learning curves plot loss values (or something related) over the course of training 

• What might our learning curves look like for different learning rates ? 

• Too low may “stop learning” too early, too high may cause oscillation/divergence

α
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Does the learning rate have to be constant?

• Commonly, a learning rate schedule will be used rather than a constant 

• Linear decay decreases the learning rate a constant amount each iteration: 

 

• Cosine annealing decays the learning rate according to: 

 

• For large , there may also be a linear warmup for the first few epochs

αi = αinitial ⋅ (1 − i
max_steps )

αi = αinitial ⋅ 0.5 ⋅ [1 + cos (π ⋅ i
max_steps )]

αinitial
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Summary

• For practical neural network training, we: 

• Pick a mini batch size  — this is usually limited by memory 

• Pick a learning rate  and a learning rate schedule (and maybe a warmup) 

• Pick a maximum number of iterations to train (though we may stop early) 

• How do we pick all of these things? 

• Training loss (empirical risk) can diagnose underfitting (poor optimization), 
validation loss (true risk estimate) can diagnose overfitting (poor generalization)

B

αinitial
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Beyond vanilla gradient descent
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What’s going on with gradient descent?
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Momentum

• Intuitively, we want the optimization to “remember” the gradient steps it has taken 

• We do so by modifying the update rule:  

• Before, ; now,  

• By “blending in” previous gradients, we avoid some of the aforementioned issues 

• This is an example of an exponential moving average — gradients further in the 
past have exponentially less weight

θ ← θ − αg

g = ∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) g ← ∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) + μg
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Visualizing momentum
https://distill.pub/2017/momentum/
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Nesterov’s accelerated gradient

• Nesterov’s accelerated gradient is another optimization approach which enjoys 
interesting theoretical guarantees on some problems 

• It can be interpreted as a variant on the momentum approach we described 

• We still have ; before,  

• Now,  

• The common implementation does not look like this equation, but it is equivalent

θ ← θ − αg g ← ∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) + μg

g ← ∇θ
1
N

N

∑
i=1

ℓ(θ − αμg; xi, yi) + μg
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Gradient directions vs. magnitudes

• The sign of the gradient is useful for telling us which direction to move in 

• Oftentimes, however, the magnitude of the gradient is not as useful/trustworthy 

• We may have loss landscapes that are not sufficiently smooth 

• Gradient magnitudes also tend to start out large and end up very small 

• As it turns out, “normalizing” the gradient magnitudes along each dimension 
(separately for each parameter) can lead to an effective optimization strategy
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Adam

basic idea: combine momentum with a second moment adjustment
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What’s so great about Adam?

• Empirically, Adam seems to work well “out of the box” for many neural networks 

• It combines momentum with a cheap approximation of second order information 
— actual second order methods like Newton’s method are far too expensive 

• There’s also some relationship to methods which “adapt” the learning rate 
separately for each parameter — AdaGrad and RMSProp 

• The important takeaway: when tackling a new deep learning problem, most 
people will try both stochastic gradients with momentum and Adam 

• Hopefully at least one of them does well…
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Weight decay vs. -regularizationℓ2

• Remember that adding  to the loss function is -regularization 

• Sometimes (somewhat erroneously) referred to as weight decay 

• Weight decay is actually an extra step in the optimization: after taking a 
gradient step, we do  (shrinking the parameters toward zero) 

• For stochastic gradients, -regularization and weight decay are the same 

• Not true for Adam! We can consider Adam either with -regularization or with 
weight decay (typically referred to as the AdamW optimizer)

λ∥θ∥2
2 ℓ2

θ ← (1 − λ)θ
ℓ2

ℓ2
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Tuning the optimization

• What hyperparameters do we have? Already discussed: , max # iterations, etc. 

• :  is a good number to start from, but this usually requires tuning 

• A useful (and surprising!) rule-of-thumb: if some  is good for some , then 
 is often a good value for  

• These days, people are often fine tuning large pretrained models using small  

•  is a good default value for momentum, often doesn’t require tuning 

• , ,  for Adam usually don’t require tuning!

B

αinitial 0.001
αinitial B

kαinitial kB

αinitial

μ = 0.9
β1 = 0.9 β2 = 0.999 ϵ = 10−8
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