Today’s lecture

• So far in lecture, we have built up a simple neural network model, and we have defined our negative log likelihood (cross-entropy) loss function.

• We saw last week two different ways to think about computing gradients of the loss function with respect to the model parameters: backprop and autodiff.

• We have also seen the basic idea behind gradient based optimization.

• Today, we will complete our story on optimization, flesh out gradient based optimization in detail, and describe how neural networks are trained in practice.
A hand-wavy overview of optimization
Remember: gradient based optimization

- Deep learning relies on iterative optimization to find good parameters
 - Starting from an initial “guess”, continually refine that guess until we are satisfied with our final answer
- By far the most commonly used set of iterative optimization techniques in deep learning is (first order) gradient based optimization and variants thereof
- Move the parameters in the direction of the negative gradient of the average loss:

\[
\theta \leftarrow \theta - \alpha \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; x_i, y_i) \quad \text{— we refer to } \alpha \text{ as a step size or learning rate}
\]
Visualizing losses and optimization

- Optimization is hard to visualize for any more than two parameters
- But neural networks have thousands, millions, billions of parameters…
- For visualization purposes, we will pretend they have two
- Some works have explored interesting ways to visualize loss “landscapes”

Li et al, NIPS ’18
Garipov et al, NIPS ’18
Visualizing gradient descent

https://distill.pub/2017/momentum/
What’s going on with gradient descent?
So… optimization is really hard?

- Even for the previous **convex, well conditioned** optimization problem, we are not blown away by gradient descent’s performance.

- Do we really have any hope of applying this to train neural networks?
What makes neural network training possible?

• Do we really have any hope of using gradient descent to train neural networks?
• Yes! Because of a few reasons:
 • We have methods that work better than vanilla gradient descent
 • Some neural network architectures result in easier optimization — a topic for future lectures
 • In practice, we don’t really care about reaching the global optimum
 • Actually, we don’t really care about reaching any optimum…
An aside: critical points

Critical points, in our setting, occur when \(\nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; x_i, y_i) = 0 \)

- The global optimum is a critical point, but critical points could also be:
 - A local optimum! Turns out, though, that these are often quite good too
 - A plateau or saddle point! Turns out that we don’t really worry about these
- For neural network training, we have bigger practical concerns than what type of critical point we have reached — we don’t usually reach one in the first place!
Practical neural network training
Stochastic optimization

Or “stochastic gradient descent (SGD)”, colloquially

- Computing $\nabla_\theta \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; x_i, y_i)$ every iteration for large N (think 1 million) is a bad idea.

 - Instead, we pick a **batch size** (or **mini batch size**) $B \ll N$, we randomly sample
 $$\{(x_1, y_1), \ldots, (x_B, y_B)\}$$ from the training data, and we compute $\nabla_\theta \frac{1}{B} \sum_{i=1}^{B} \ell(\theta; x_i, y_i)$

- Sampling the mini batch i.i.d. is rather slow due to random memory accesses.

 - Instead, we *shuffle* the dataset and construct mini batches from consecutive data points.

 - After each pass on the training data (called an **epoch**), we reshuffle.
Learning rates and learning curves

• Learning curves plot loss values (or something related) over the course of training.
• What might our learning curves look like for different learning rates α?
• Too low may “stop learning” too early, too high may cause oscillation/divergence.
Does the learning rate have to be constant?

- Commonly, a learning rate schedule will be used rather than a constant.

- **Linear decay** decreases the learning rate a constant amount each iteration:
 \[\alpha_i = \alpha_{\text{initial}} \cdot \left(1 - \frac{i}{\text{max_steps}}\right) \]

- **Cosine annealing** decays the learning rate according to:
 \[\alpha_i = \alpha_{\text{initial}} \cdot 0.5 \cdot \left[1 + \cos \left(\pi \cdot \frac{i}{\text{max_steps}}\right)\right] \]

- For large \(\alpha_{\text{initial}} \), there may also be a **linear warmup** for the first few epochs.
Summary

- For practical neural network training, we:
 - Pick a mini batch size B — this is usually limited by memory
 - Pick a learning rate α_{initial} and a learning rate schedule (and maybe a warmup)
 - Pick a maximum number of iterations to train (though we may stop early)
- How do we pick all of these things?
 - Training loss (empirical risk) can diagnose underfitting (poor optimization), validation loss (true risk estimate) can diagnose overfitting (poor generalization)
Beyond vanilla gradient descent
What’s going on with gradient descent?
Momentum

• Intuitively, we want the optimization to “remember” the gradient steps it has taken

• We do so by modifying the update rule: \(\theta \leftarrow \theta - \alpha g \)

\[
\text{Before, } g = \nabla_\theta \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; x_i, y_i); \text{ now, } g \leftarrow \nabla_\theta \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; x_i, y_i) + \mu g
\]

• By “blending in” previous gradients, we avoid some of the aforementioned issues

• This is an example of an exponential moving average — gradients further in the past have exponentially less weight
Visualizing momentum

https://distill.pub/2017/momentum/
Nesterov’s accelerated gradient

• Nesterov’s accelerated gradient is another optimization approach which enjoys interesting theoretical guarantees on some problems

• It can be interpreted as a variant on the momentum approach we described

 We still have \(\theta \leftarrow \theta - \alpha g \); before, \(g \leftarrow \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; x_i, y_i) + \mu g \)

 Now, \(g \leftarrow \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta - \alpha \mu g; x_i, y_i) + \mu g \)

• The common implementation does not look like this equation, but it is equivalent
Gradient directions vs. magnitudes

- The sign of the gradient is useful for telling us which direction to move in.
- Oftentimes, however, the magnitude of the gradient is not as useful/trustworthy:
 - We may have loss landscapes that are not sufficiently smooth.
 - Gradient magnitudes also tend to start out large and end up very small.
- As it turns out, “normalizing” the gradient magnitudes along each dimension (separately for each parameter) can lead to an effective optimization strategy.
Adam

basic idea: combine momentum with a second moment adjustment

\[\theta \leftarrow \theta - \alpha g \quad \text{what is } g? \]

momentum:

\[m \leftarrow (1 - \beta_1) \nabla_{\theta} l + \beta_1 m \]

second moment estimate:

\[v \leftarrow (1 - \beta_2) (\nabla_{\theta} l)^2 + \beta_2 v \]

detail - bias correction:

\[\hat{m} = m / (1 - \beta_1^t) \]
\[\hat{v} = v / (1 - \beta_2^t) \]

\[g = \hat{m} / (\sqrt{\hat{v}} + \epsilon) \]
What’s so great about Adam?

- Empirically, Adam seems to work well “out of the box” for many neural networks.
- It combines momentum with a cheap approximation of second order information — actual second order methods like Newton’s method are far too expensive.
- There’s also some relationship to methods which “adapt” the learning rate separately for each parameter — AdaGrad and RMSProp.
- The important takeaway: when tackling a new deep learning problem, most people will try both stochastic gradients with momentum and Adam.
- Hopefully at least one of them does well…
Weight decay vs. ℓ_2-regularization

- Remember that adding $\lambda \|\theta\|_2^2$ to the loss function is ℓ_2-regularization

- Sometimes (somewhat erroneously) referred to as weight decay

 - Weight decay is actually an extra step in the optimization: after taking a gradient step, we do $\theta \leftarrow (1 - \lambda)\theta$ (shrinking the parameters toward zero)

- For stochastic gradients, ℓ_2-regularization and weight decay are the same

- Not true for Adam! We can consider Adam either with ℓ_2-regularization or with weight decay (typically referred to as the AdamW optimizer)
Tuning the optimization

• What hyperparameters do we have? Already discussed: B, max # iterations, etc.

• α_{initial}: 0.001 is a good number to start from, but this usually requires tuning

 • A useful (and surprising!) rule-of-thumb: if some α_{initial} is good for some B, then $k\alpha_{\text{initial}}$ is often a good value for kB

 • These days, people are often fine tuning large pretrained models using small α_{initial}

• $\mu = 0.9$ is a good default value for momentum, often doesn’t require tuning

• $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$ for Adam usually don’t require tuning!