
2022/02/07

Lecture 6: Optimization
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• So far in lecture, we have built up a simple neural network model, and we have
defined our negative log likelihood (cross-entropy) loss function

• We saw last week two different ways to think about computing gradients of the
loss function with respect to the model parameters: backprop and autodiff

• We have also seen the basic idea behind gradient based optimization

• Today, we will complete our story on optimization, flesh out gradient based
optimization in detail, and describe how neural networks are trained in practice

2

A hand-wavy overview of optimization

3

Remember: gradient based optimization

• Deep learning relies on iterative optimization to find good parameters

• Starting from an initial “guess”, continually refine that guess until we are satisfied
with our final answer

• By far the most commonly used set of iterative optimization techniques in deep
learning is (first order) gradient based optimization and variants thereof

• Move the parameters in the direction of the negative gradient of the average loss:

 — we refer to as a step size or learning rateθ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) α

4

Visualizing losses and optimization

• Optimization is hard to visualize for any more than two parameters

• But neural networks have thousands, millions, billions of parameters…

• For visualization purposes, we will pretend they have two

• Some works have explored interesting ways to visualize loss “landscapes”

5

Li et al, NIPS ’18 Garipov et al, NIPS ‘18

Visualizing gradient descent
https://distill.pub/2017/momentum/

6

https://distill.pub/2017/momentum/

What’s going on with gradient descent?

7

0

So… optimization is really hard?

• Even for the previous convex, well conditioned optimization problem, we are not
blown away by gradient descent’s performance

• Do we really have any hope of applying this to train neural networks?

8

Li et al, NIPS ’18

What makes neural network training possible?

• Do we really have any hope of using gradient descent to train neural networks?

• Yes! Because of a few reasons:

• We have methods that work better than vanilla gradient descent

• Some neural network architectures result in
easier optimization — a topic for future lectures

• In practice, we don’t really care about reaching
the global optimum

• Actually, we don’t really care about reaching any optimum…
9

Li et al, NIPS ’18

An aside: critical points

• Critical points, in our setting, occur when

• The global optimum is a critical point, but critical points could also be:

• A local optimum! Turns out, though, that these are often quite good too

• A plateau or saddle point! Turns out that we don’t really worry about these

• For neural network training, we have bigger practical concerns than what type of
critical point we have reached — we don’t usually reach one in the first place!

∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) = 0

10

Practical neural network training

11

Stochastic optimization
Or “stochastic gradient descent (SGD)”, colloquially

• Computing every iteration for large (think 1 million) is a bad idea

• Instead, we pick a batch size (or mini batch size) , we randomly sample

 from the training data, and we compute

• Sampling the mini batch i.i.d. is rather slow due to random memory accesses

• Instead, we shuffle the dataset and construct mini batches from consecutive data points

• After each pass on the training data (called an epoch), we reshuffle

∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) N

B ≪ N
{(x1, y1), …, (xB, yB)} ∇θ

1
B

B

∑
i=1

ℓ(θ; xi, yi)

12

Learning rates and learning curves

• Learning curves plot loss values (or something related) over the course of training

• What might our learning curves look like for different learning rates ?

• Too low may “stop learning” too early, too high may cause oscillation/divergence

α

13

lo
ss

epoch
good learning rate
low learning rate
high learning rate

Does the learning rate have to be constant?

• Commonly, a learning rate schedule will be used rather than a constant

• Linear decay decreases the learning rate a constant amount each iteration:

• Cosine annealing decays the learning rate according to:

• For large , there may also be a linear warmup for the first few epochs

αi = αinitial ⋅ (1 − i
max_steps)

αi = αinitial ⋅ 0.5 ⋅ [1 + cos (π ⋅ i
max_steps)]

αinitial
14

Summary

• For practical neural network training, we:

• Pick a mini batch size — this is usually limited by memory

• Pick a learning rate and a learning rate schedule (and maybe a warmup)

• Pick a maximum number of iterations to train (though we may stop early)

• How do we pick all of these things?

• Training loss (empirical risk) can diagnose underfitting (poor optimization),
validation loss (true risk estimate) can diagnose overfitting (poor generalization)

B

αinitial

15

Beyond vanilla gradient descent

16

What’s going on with gradient descent?

17

Momentum

• Intuitively, we want the optimization to “remember” the gradient steps it has taken

• We do so by modifying the update rule:

• Before, ; now,

• By “blending in” previous gradients, we avoid some of the aforementioned issues

• This is an example of an exponential moving average — gradients further in the
past have exponentially less weight

θ ← θ − αg

g = ∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) g ← ∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) + μg

18

Visualizing momentum
https://distill.pub/2017/momentum/

19

https://distill.pub/2017/momentum/

Nesterov’s accelerated gradient

• Nesterov’s accelerated gradient is another optimization approach which enjoys
interesting theoretical guarantees on some problems

• It can be interpreted as a variant on the momentum approach we described

• We still have ; before,

• Now,

• The common implementation does not look like this equation, but it is equivalent

θ ← θ − αg g ← ∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi) + μg

g ← ∇θ
1
N

N

∑
i=1

ℓ(θ − αμg; xi, yi) + μg

20

Gradient directions vs. magnitudes

• The sign of the gradient is useful for telling us which direction to move in

• Oftentimes, however, the magnitude of the gradient is not as useful/trustworthy

• We may have loss landscapes that are not sufficiently smooth

• Gradient magnitudes also tend to start out large and end up very small

• As it turns out, “normalizing” the gradient magnitudes along each dimension
(separately for each parameter) can lead to an effective optimization strategy

21

Adam

basic idea: combine momentum with a second moment adjustment

22

O O ng what is g
momentum m e l B Dol t B m

second moment estimate v e l B Pol t Bev
detail bias correction m m l B

I v I BE
g M Ft e

What’s so great about Adam?

• Empirically, Adam seems to work well “out of the box” for many neural networks

• It combines momentum with a cheap approximation of second order information
— actual second order methods like Newton’s method are far too expensive

• There’s also some relationship to methods which “adapt” the learning rate
separately for each parameter — AdaGrad and RMSProp

• The important takeaway: when tackling a new deep learning problem, most
people will try both stochastic gradients with momentum and Adam

• Hopefully at least one of them does well…

23

Weight decay vs. -regularizationℓ2

• Remember that adding to the loss function is -regularization

• Sometimes (somewhat erroneously) referred to as weight decay

• Weight decay is actually an extra step in the optimization: after taking a
gradient step, we do (shrinking the parameters toward zero)

• For stochastic gradients, -regularization and weight decay are the same

• Not true for Adam! We can consider Adam either with -regularization or with
weight decay (typically referred to as the AdamW optimizer)

λ∥θ∥2
2 ℓ2

θ ← (1 − λ)θ
ℓ2

ℓ2

24

Tuning the optimization

• What hyperparameters do we have? Already discussed: , max # iterations, etc.

• : is a good number to start from, but this usually requires tuning

• A useful (and surprising!) rule-of-thumb: if some is good for some , then
 is often a good value for

• These days, people are often fine tuning large pretrained models using small

• is a good default value for momentum, often doesn’t require tuning

• , , for Adam usually don’t require tuning!

B

αinitial 0.001
αinitial B

kαinitial kB

αinitial

μ = 0.9
β1 = 0.9 β2 = 0.999 ϵ = 10−8

25

