Lecture 6: Optimization

CS 182/282A ("Deep Learning")

2022/02/07

Today's lecture

- So far in lecture, we have built up a simple neural network model, and we have defined our negative log likelihood (cross-entropy) loss function
- We saw last week two different ways to think about computing gradients of the loss function with respect to the model parameters: backprop and autodiff
- We have also seen the basic idea behind gradient based optimization
- Today, we will complete our story on optimization, flesh out gradient based optimization in detail, and describe how neural networks are trained in practice

A hand-wavy overview of optimization

Remember: gradient based optimization

- Deep learning relies on **iterative optimization** to find good parameters
 - Starting from an initial "guess", continually refine that guess until we are satisfied with our final answer
- By far the most commonly used set of iterative optimization techniques in deep learning is (first order) gradient based optimization and variants thereof
- Move the parameters in the direction of the *negative gradient* of the average loss: $\theta \leftarrow \theta - \alpha \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; \mathbf{x}_i, y_i) - \text{we refer to } \alpha \text{ as a step size or learning rate}$

Visualizing losses and optimization

- Optimization is hard to visualize for any more than two parameters
 - But neural networks have thousands, millions, billions of parameters...
 - For visualization purposes, we will pretend they have two
- Some works have explored interesting ways to visualize loss "landscapes"

Visualizing gradient descent

https://distill.pub/2017/momentum/

What's going on with gradient descent?

So... optimization is really hard?

- Even for the previous *convex, well conditioned* optimization problem, we are not blown away by gradient descent's performance
- Do we really have any hope of applying this to train neural networks?

Li et al, NIPS '18

What makes neural network training possible?

- Do we really have any hope of using gradient descent to train neural networks?
- Yes! Because of a few reasons:
 - We have methods that work better than vanilla gradient descent
 - Some neural network architectures result in easier optimization a topic for future lectures
 - In practice, we don't really care about reaching the global optimum

Li et al, NIPS '18

• Actually, we don't really care about reaching any optimum...

An aside: critical points

Critical points, in our setting, occur when
$$\nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; \mathbf{x}_i, y_i) = 0$$

- The global optimum is a critical point, but critical points could also be:
 - A local optimum! Turns out, though, that these are often quite good too
 - A plateau or saddle point! Turns out that we don't really worry about these
- For neural network training, we have bigger practical concerns than what type of critical point we have reached we don't usually reach one in the first place!

Practical neural network training

Stochastic optimization

Or "stochastic gradient descent (SGD)", colloquially

• Computing $\nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; \mathbf{x}_i, y_i)$ every iteration for large N (think 1 million) is a bad idea

- Instead, we pick a **batch size** (or **mini batch size**) $B \ll N$, we randomly sample $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_B, y_B)\}$ from the training data, and we compute $\nabla_{\theta} \frac{1}{B} \sum_{i=1}^{B} \ell(\theta; \mathbf{x}_i, y_i)$
- Sampling the mini batch i.i.d. is rather slow due to random memory accesses
 - Instead, we *shuffle* the dataset and construct mini batches from consecutive data points
 - After each pass on the training data (called an **epoch**), we reshuffle

Learning rates and learning curves

- Learning curves plot loss values (or something related) over the course of training
- What might our learning curves look like for different learning rates α ?
- Too low may "stop learning" too early, too high may cause oscillation/divergence

Does the learning rate have to be constant?

- Commonly, a learning rate **schedule** will be used rather than a constant
- Linear decay decreases the learning rate a constant amount each iteration: $\alpha_i = \alpha_{\text{initial}} \cdot \left(1 - \frac{i}{\max_\text{steps}}\right)$
- **Cosine annealing** decays the learning rate according to: $\alpha_i = \alpha_{\text{initial}} \cdot 0.5 \cdot \left[1 + \cos\left(\pi \cdot \frac{i}{\text{max_steps}}\right) \right]$
- For large $lpha_{
 m initial}$, there may also be a **linear warmup** for the first few epochs

- For practical neural network training, we:
 - Pick a mini batch size B this is usually limited by memory
 - Pick a learning rate $\alpha_{initial}$ and a learning rate schedule (and maybe a warmup)
 - Pick a maximum number of iterations to train (though we may stop early)
- How do we pick all of these things?
 - Training loss (empirical risk) can diagnose underfitting (poor optimization), validation loss (true risk estimate) can diagnose overfitting (poor generalization)

Beyond vanilla gradient descent

What's going on with gradient descent?

Momentum

- Intuitively, we want the optimization to "remember" the gradient steps it has taken
- We do so by modifying the update rule: $\theta \leftarrow \theta \alpha \mathbf{g}$

• Before,
$$\mathbf{g} = \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; \mathbf{x}_i, y_i)$$
; now, $\mathbf{g} \leftarrow \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; \mathbf{x}_i, y_i) + \mu \mathbf{g}$

- By "blending in" previous gradients, we avoid some of the aforementioned issues
- This is an example of an *exponential moving average* gradients further in the past have exponentially less weight

Visualizing momentum https://distill.pub/2017/momentum/

Nesterov's accelerated gradient

- Nesterov's accelerated gradient is another optimization approach which enjoys interesting theoretical guarantees on some problems
- It can be interpreted as a variant on the momentum approach we described

We still have
$$\theta \leftarrow \theta - \alpha \mathbf{g}$$
; before, $\mathbf{g} \leftarrow \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta; \mathbf{x}_i, y_i) + \mu \mathbf{g}$

• Now,
$$\mathbf{g} \leftarrow \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(\theta - \alpha \mu \mathbf{g}; \mathbf{x}_i, y_i) + \mu \mathbf{g}$$

• The common implementation does not look like this equation, but it is equivalent

Gradient directions vs. magnitudes

- The sign of the gradient is useful for telling us which direction to move in
- Oftentimes, however, the *magnitude* of the gradient is not as useful/trustworthy
 - We may have loss landscapes that are not sufficiently smooth
 - Gradient magnitudes also tend to start out large and end up very small
- As it turns out, "normalizing" the gradient magnitudes along each dimension (separately for each parameter) can lead to an effective optimization strategy

basic idea: combine momentum with a second moment adjustment

What's so great about Adam?

- Empirically, Adam seems to work well "out of the box" for many neural networks
- It combines momentum with a cheap approximation of second order information

 actual second order methods like Newton's method are far too expensive
 - There's also some relationship to methods which "adapt" the learning rate separately for each parameter *AdaGrad* and *RMSProp*
- The important takeaway: when tackling a new deep learning problem, most people will try both stochastic gradients with momentum and Adam
 - Hopefully at least one of them does well...

Weight decay vs. ℓ_2 -regularization

- Remember that adding $\lambda \|\theta\|_2^2$ to the loss function is ℓ_2 -regularization
- Sometimes (somewhat erroneously) referred to as weight decay
 - Weight decay is actually an extra step in the optimization: after taking a gradient step, we do $\theta \leftarrow (1 \lambda)\theta$ (shrinking the parameters toward zero)
- For stochastic gradients, ℓ_2 -regularization and weight decay are the same
- Not true for Adam! We can consider Adam either with ℓ_2 -regularization or with weight decay (typically referred to as the **AdamW** optimizer)

Tuning the optimization

- What hyperparameters do we have? Already discussed: B, max # iterations, etc.
- α_{initial} : 0.001 is a good number to start from, but this usually requires tuning
 - A useful (and surprising!) rule-of-thumb: if some $\alpha_{\rm initial}$ is good for some B, then $k\alpha_{\rm initial}$ is often a good value for kB
 - These days, people are often *fine tuning* large *pretrained* models using small $\alpha_{initial}$
- $\mu = 0.9$ is a good default value for momentum, often doesn't require tuning
- $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$ for Adam *usually* don't require tuning!