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Lecture 4: Neural network basics
CS 182/282A (“Deep Learning”)
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Today’s lecture

• Some of you may be thinking: “where are the deep neural networks??” 

• Today, we’ll start talking about our first basic neural network models 

• We’ll put a full model together in this lecture, mathematically and diagrammatically 

• We will then work through the backpropagation algorithm for computing gradients 
of the loss function with respect to the neural network parameters 

• This algorithm relies on reusing gradient values and matrix-vector products 

• Useful to learn and implement once (for the latter, HW1 has you covered), but next 
lecture you’ll hear from Matt Johnson how deep learning libraries do this for you
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Recall: logistic regression
The “linear neural network”

• Given , define  , where  is a  matrix 

• Then, for class , we have  

•
Remember:  

• Loss function: 

x ∈ ℝd fθ(x) = θ⊤x θ d × K

c ∈ {0,…, K − 1} pθ(y = c |x) = softmax( fθ(x))c

softmax( fθ(x))c = exp fθ(x)c

∑K−1
i=0 exp fθ(x)i

ℓ(θ; x, y) = − log pθ(y |x)
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A diagram for logistic regression
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Another type of drawing: computation graphs

computation graphs are more detailed, rigorous graphical representations 

you will see variations on the style of drawing, level of detail, etc.
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Neural networks: attempt #1

• Our drawing of logistic regression suggests that it is a “single layer model” 

• Are neural networks just more of these layers stacked on top of each other? 

• What’s the issue with this? 

• Composing linear transformations together is still linear!

6

x z

linear layer
softmax

x z(1)

linear layer

z(2)

linear layer
… softmax



Making neural networks nonlinear

• One of the main things that makes neural networks great is that they can 
represent complex non linear functions 

• How? The canonical answer: add nonlinearities after every linear layer 

• Also called activation functions 

• Basically always element wise functions on the linear layer output 

• Examples: , , tanh(z) sigmoid(z) = 1
exp{−z} + 1 ReLU(z) = max{0, z}
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Neural networks: attempt #2
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What function is this?

•  represents all our parameters, e.g.,  

• If our neural network has parameters  and  hidden layers, then it represents 
the function  

•  is the nonlinearity / activation function 

•  is the -th linear layer 

• What can this function represent? Turns out, a lot

θ [W(1), b(1), …, W(L), b(L), Wfinal, bfinal]
θ L

fθ(x) = softmax(Afinal(σ(A(L)(…σ(A(1)(x))…))))
σ

Ai(v) = Wiv + bi i
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Visualizing neural network functions
https://playground.tensorflow.org/
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Visualizing neural network functions
https://playground.tensorflow.org/
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The backpropagation algorithm
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Remember: the machine learning method
(or, at least, the deep learning method)

1. Define your model 

2. Define your loss function 

3. Define your optimizer 

4. Run it on a big GPU
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wait… we need gradients!

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)



What gradients do we need?

• We want to update our parameters as  

•  represents all our parameters, e.g.,  

• So we need  

• How do we compute these gradients? Let’s talk about two different approaches: 

• numerical (finite differences) vs. analytical (backpropagation)

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

θ [W(1), b(1), …, W(L), b(L), Wfinal, bfinal]
[∇W(1)ℓ, ∇b(1)ℓ, …, ∇W(L)ℓ, ∇b(L)ℓ, ∇Wfinalℓ, ∇bfinalℓ]
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Finite differences

• The method of finite differences says that, for any sufficiently smooth function  

which operates on a vector , the partial derivative  is approximated by 

, where  denotes a “one hot” vector 

• This is the definition of (partial) derivatives as  

• Think about how slow this would be to do for all our network parameters… 
Nevertheless, it can be useful as a method for checking gradients

f
x ∂f

∂xi∂f
∂xi

≈ f(x + ϵei) − f(x − ϵei)
2ϵ

ei

ϵ → 0
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Computing gradients via backpropagation

• The backpropagation algorithm is a much faster and more efficient method for 
computing gradients for neural network parameters 

• It made training large neural networks feasible and practical 

• Backpropagation works “backward” through the network, which allows for: 

• reusing gradient values that have already been computed 

• computing matrix-vector products rather than matrix-matrix products, since 
the loss is a scalar! 

• It’s pretty confusing the first (or second, or third, …) time you see it
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Backpropagation: the math

first, let’s do the “forward pass” through our network, from input to prediction 

let’s work with two hidden layers, for concreteness
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Backpropagation: the math

 represents our logitsz = Wfinala(2) + bfinal
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Backpropagation: the math

first let’s look at  and  

remember: , and also  

∇Wfinalℓ ∇bfinalℓ

ℓ = log∑ exp z − zyi
z = Wfinala(2) + bfinal
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Backpropagation: the math

now let’s look at  and  

remember: , and also  

a pattern emerges… do you see it?

∇W(2)ℓ ∇b(2)ℓ

a(2) = σ(z(2)) z(2) = W(2)a(1) + b(2)
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Backpropagation: the summary

• First, we perform a forward pass and cache all the intermediate ,  

• Then, we work our way backwards to compute all the ,  

• Going backwards allows us to reuse gradients that have already been computed 

• It also results in matrix-vector product computations, which are far more efficient 
than matrix-matrix product computations 

• After all the gradients have been computed, we are ready to take a gradient step 

• Neural network optimization repeats this over and over — more on that next week

z(l) a(l)

∇W(l)ℓ ∇b(l)ℓ
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Confused?

• Backpropagation can be tricky and unintuitive 

• What can help is trying to work out the math on your own to see the patterns 

• Implementing it for HW1 should also help solidify the concept 

• But, most importantly: we don’t have to do it ourselves these days! 

• Deep learning libraries do it for us 

• Next lecture, Matt Johnson will come tell you how that’s done in a general and 
efficient way — a can’t miss lecture!
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