Lecture 4: Neural network basics

CS 182/282A (“Deep Learning”)

2022/01/31

Today’s lecture

e Some of you may be thinking: “where are the deep neural networks??”
e Joday, we'll start talking about our first basic neural network models
o We'll put a full model together in this lecture, mathematically and diagrammatically

* We will then work through the backpropagation algorithm for computing gradients
of the loss function with respect to the neural network parameters

* This algorithm relies on reusing gradient values and matrix-vector products

* Useful to learn and implement once (for the latter, HW1 has you covered), but next
lecture you’ll hear from Matt Johnson how deep learning libraries do this for you

2

Recall: logistic regression
The “linear neural network”
e Given x € RY define fo(X) = 0"x, where @ is a d X K matrix

e Then, for class ¢ € {0,..., K — 1}, we have py(y = c|X) = softmax(fy(X)),

cX X
Remember: softmax(fH(X))c — pr()c

o K-1

zi=0 eprQ(X)i
e Loss function: £(0;X,y) = — log py(y | X)

A diagram for logistic regression

i - - e Often, we will simplify this diagram:

Z
. _,m_, « Omit the @ box, the parameters
are implicit in the diagram
“linear layer” Denote it with just the arrow

e Omit the layer box entirely!

e Omit the loss box at the end, if

X Z
we’re drawing “just the model”
linear layer

Another type of drawing: computation graphs
==

computation graphs are more detailed, rigorous graphical representations

®\) —> — —; —
@ @
®

you Will see variations on the style of drawing, level of detail, etc.

Neural networks: attempt #1

e Qur drawing of logistic regression suggests that it is a “single layer model”
e Are neural networks just more of these layers stacked on top of each other?

e \What’s the issue with this?

e Composing linear transformations together is still linear!
7D 7(2)

X Z X
linear layer linear layer B linear layer
6

Making neural networks nonlinear

e One of the main things that makes neural networks great is that they can
represent complex non linear functions

e How? The canonical answer: add nonlinearities after every linear layer
* Also called activation functions

e Basically always element wise functions on the linear layer output

1
Examples: tanh(z), sigmoid(z) = , ReLU(z) = max{0,z}
exp{—z} + 1

Neural networks: attempt #2

Z(D q() o) a2

X
IIinear layer B8 nonlinearity @8 linear layer nonIinearityI M

- q() a2 (L)

Z
. - . = . . = - :
nonlinear nonlinear nonlinear

linear layer
layer layer layer

What function is this?

e 0 represents all our parameters, e.g., (WO b WD D), Wfinal, bfinal]

e If our neural network has parameters @ and L hidden layers, then it represents
the function f(x) = softmax(AM3(c(AL(...a(AM(x))...))))

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

e o is the nonlinearity / activation function v R R |

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

e AY(v) = W'v + b'is the i-th linear layer

e \What can this function represent? Turns out, a lot

Visualizing neural network functions
https://playground.tensorflow.org/

o Epoch Learning rate Activation Regularization Regularization rate Problem type
4]
OO0,000 0.03 - Tanh - None - 0 v Classification v
DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.317
you want to use? do you want to Training loss 0.322
feed in?

Ratio of training to
test data: 50%

—e 3
Noise: 0)
° X,

Batch size: 10

XX
— "
0
REGENERATE sin(X;)
Colors shows .
data, neuron and F ‘
sin(X,) A 0 1

weight values.

[0 showtestdata [] Discretize output

10

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

o Epoch Learning rate Activation Regularization Regularization rate Problem type
4]
OO0,000 0.03 - Tanh - None - 0 v Classification v
DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.901
you want to use? do you want to Training loss 0.749
feed in?

Xl
>(2
Ratio of training to
test data: 50% X
—_ Xy
Noise: 0)
Y Xy
Batch size: 10 XX
' I
0
REGENERATE sin(X;)
Colors shows
data, neuron and F !
sin(X,) 1 0 1

weight values.

[0 showtestdata [] Discretize output

11

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

o Epoch Learning rate Activation Regularization Regularization rate Problem type
4]
OO0,000 0.03 v Tanh v None - 0 v Classification v
DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 1.449
you want to use? do you want to Training loss 1.452
feed in?

<3
-
Ratio of training to
test data: 50%
—e X,
Noise: 0)
® X,
Batch size: 10
— - i
REGENERATE sin(Xy)
Colors shows
data, neuron and — [_
sin(X5) ! ; ‘

weight values.

[0 showtestdata [] Discretize output

12

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

N}

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%

—0

Noise: 0

Batch size:

—o

Epoch Learning rate

000,000 0.03

FEATURES

Which properties
do you want to
feed in?

Xy

3
g

Activation Regularization
Tanh v None
1 HIDDEN LAYER

+ -

2 neurons

13

Regularization rate Problem type

v 0 - Classification -

OUTPUT

Test loss 0.521
Training loss 0.520

Colors shows

data, neuronand ! !
1

weight values.

[0 showtestdata [] Discretize output

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

O Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000,000 0.03 v Tanh v None v 0 v Classification

DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties Test loss 0.572
you want to use? do you want to Training loss 0.626
feed in? = A=
6 neurons

Xy

-0
Ratio of training to
test data: 50%

-0
D
Noise: 0
. D
Batch size: 10
® |
0
REGENERATE iz D
! Colors shows
data, neuronand ! !
Sin(1 0 1

weight values.

[0 showtestdata [] Discretize output

14

https://playground.tensorflow.org/

The backpropagation algorithm

Remember: the machine learning method

(or, at least, the deep learning method)

1. Define your model I I I I I—m

2. Define your loss function £(0;x,y) = — log py(y | X) (“cross-entropy”)

N
3. Define your optimizer 0 —0—a V@% Z £(0;x.,y,)

4. Run it on a big GPU =

wait... we need gradients!

16

What gradients do we need?

|
We want to update our parameters as @ <« 0 — a VQN Z £(0;x,,y,)
i=1

A represents all our parameters, e.g., [W, bW, ... W) pL), Wfinal, bfinal]

So we need [VW(I)Lﬂ, Vb(l)f, cees Vw(L)l/ﬂ, Vb(L)f, wainal f, beinal Lﬂ]

How do we compute these gradients? Let’s talk about two different approaches:

 numerical (finite differences) vs. analytical (backpropagation)

17

Finite differences

e The method of finite differences says that, for any sufficiently smooth function f

0
which operates on a vector X, the partial derivative d_f IS approximated by
x.
of f(x+ee)—f(x—ee) ’ ”
— X , where €; denotes a “one hot” vector
O0X; 2e

e This is the definition of (partial) derivatives as € — 0O

* Think about how slow this would lbe to do for all our network parameters...
Nevertheless, it can be useful as a method for checking gradients

18

Computing gradients via backpropagation

* The backpropagation algorithm is a much faster and more efficient method for
computing gradients for neural network parameters

e |t made training large neural networks feasible and practical
e Backpropagation works “backward” through the network, which allows for:
e reusing gradient values that have already been computed

e computing matrix-vector products rather than matrix-matrix products, since
the loss is a scalar!

e |t’s pretty confusing the first (or second, or third, ...) time you see it

19

Backpropagation: the math ; :

nonlinear nonlinear linear
layer layer layer

first, let’s do the “forward pass” through our network, from input to prediction

let’s work with two hidden layers, for concreteness

- e
i ¢ a vactol

R T
O CRP t
\ ‘E\‘\\ N oo wamelboed

y,: -t ndex

Backpropagation: the math : Z
nonlinear nonlinear linear M

layer layer layer

z = Winalg@ 4 pfinal represents our logits

iy § a yactol
s
mx\s T

P CRP
h\ NS r bl

ACHEOL Yo - th adex

bog o (ye 122D = 2y, - Ly Bexpe
L(O; x;,y;)= QO')Zex?t > By

wany - V“‘O,)vxol +or o\ \t\\l\:’

21

Backpropagation: the math : Z
nonlinear nonlinear linear M

layer layer layer

first let’s look at wainalf and beinalf

remember: £ = log Z eXpz — z,,and also Z = winala@ 4 pfina

22

Backpropagation: the math ; :

nonlinear nonlinear linear
layer layer layer

now let’s look at Ve and Vi

remember: 2 = ¢(z?), and also z® = W®@all) 4 p@

a pattern emerges... do you see it?

23

Backpropagation: the summary

e First, we perform a forward pass and cache all the intermediate Z(l), a®

e Then, we work our way backwards to compute all the Vo ?, Vil
* (Going backwards allows us to reuse gradients that have already been computed

* |t also results in matrix-vector product computations, which are far more efficient
than matrix-matrix product computations

o After all the gradients have been computed, we are ready to take a gradient step

* Neural network optimization repeats this over and over — more on that next week

24

Confused?

e Backpropagation can be tricky and unintuitive
* What can help is trying to work out the math on your own to see the patterns
* |Implementing it for HW1 should also help solidify the concept
e But, most importantly: we don’t have to do it ourselves these days!
e Deep learning libraries do it for us

e Next lecture, Matt Johnson will come tell you how that’s done in a general and
efficient way — a can’t miss lecture!

25

