
2022/01/31

Lecture 4: Neural network basics
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• Some of you may be thinking: “where are the deep neural networks??”

• Today, we’ll start talking about our first basic neural network models

• We’ll put a full model together in this lecture, mathematically and diagrammatically

• We will then work through the backpropagation algorithm for computing gradients
of the loss function with respect to the neural network parameters

• This algorithm relies on reusing gradient values and matrix-vector products

• Useful to learn and implement once (for the latter, HW1 has you covered), but next
lecture you’ll hear from Matt Johnson how deep learning libraries do this for you

2

Recall: logistic regression
The “linear neural network”

• Given , define , where is a matrix

• Then, for class , we have

•
Remember:

• Loss function:

x ∈ ℝd fθ(x) = θ⊤x θ d × K

c ∈ {0,…, K − 1} pθ(y = c |x) = softmax(fθ(x))c

softmax(fθ(x))c = exp fθ(x)c

∑K−1
i=0 exp fθ(x)i

ℓ(θ; x, y) = − log pθ(y |x)

3

A diagram for logistic regression

4

softmax

x

“linear layer”

θ
z • Often, we will simplify this diagram:

• Omit the box, the parameters
are implicit in the diagram

• Omit the layer box entirely!
Denote it with just the arrow

• Omit the loss box at the end, if
we’re drawing “just the model”

θ

x z

linear layer
softmax

cross-ent
loss

y

Another type of drawing: computation graphs

computation graphs are more detailed, rigorous graphical representations

you will see variations on the style of drawing, level of detail, etc.

5

I matmal exp sum s index

s
y

Neural networks: attempt #1

• Our drawing of logistic regression suggests that it is a “single layer model”

• Are neural networks just more of these layers stacked on top of each other?

• What’s the issue with this?

• Composing linear transformations together is still linear!

6

x z

linear layer
softmax

x z(1)

linear layer

z(2)

linear layer
… softmax

Making neural networks nonlinear

• One of the main things that makes neural networks great is that they can
represent complex non linear functions

• How? The canonical answer: add nonlinearities after every linear layer

• Also called activation functions

• Basically always element wise functions on the linear layer output

• Examples: , , tanh(z) sigmoid(z) = 1
exp{−z} + 1 ReLU(z) = max{0, z}

7

Neural networks: attempt #2

8

x z(2)

linear layer
… softmax

z(1)

linear layer

a(1)

nonlinearity

a(2)

nonlinearity

softmax

x a(2)

nonlinear 
layer

…

a(1)

nonlinear 
layer

a(L)

nonlinear 
layer

z

linear layer

What function is this?

• represents all our parameters, e.g.,

• If our neural network has parameters and hidden layers, then it represents
the function

• is the nonlinearity / activation function

• is the -th linear layer

• What can this function represent? Turns out, a lot

θ [W(1), b(1), …, W(L), b(L), Wfinal, bfinal]
θ L

fθ(x) = softmax(Afinal(σ(A(L)(…σ(A(1)(x))…))))
σ

Ai(v) = Wiv + bi i

9

Visualizing neural network functions
https://playground.tensorflow.org/

10

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

11

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

12

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

13

https://playground.tensorflow.org/

Visualizing neural network functions
https://playground.tensorflow.org/

14

https://playground.tensorflow.org/

The backpropagation algorithm

15

Remember: the machine learning method
(or, at least, the deep learning method)

1. Define your model

2. Define your loss function

3. Define your optimizer

4. Run it on a big GPU

16

softmax

x a(2)

…

a(1) a(L) z

 (“cross-entropy”)ℓ(θ; x, y) = − log pθ(y |x)

wait… we need gradients!

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

What gradients do we need?

• We want to update our parameters as

• represents all our parameters, e.g.,

• So we need

• How do we compute these gradients? Let’s talk about two different approaches:

• numerical (finite differences) vs. analytical (backpropagation)

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

θ [W(1), b(1), …, W(L), b(L), Wfinal, bfinal]
[∇W(1)ℓ, ∇b(1)ℓ, …, ∇W(L)ℓ, ∇b(L)ℓ, ∇Wfinalℓ, ∇bfinalℓ]

17

Finite differences

• The method of finite differences says that, for any sufficiently smooth function

which operates on a vector , the partial derivative is approximated by

, where denotes a “one hot” vector

• This is the definition of (partial) derivatives as

• Think about how slow this would be to do for all our network parameters…
Nevertheless, it can be useful as a method for checking gradients

f
x ∂f

∂xi∂f
∂xi

≈ f(x + ϵei) − f(x − ϵei)
2ϵ

ei

ϵ → 0

18

Computing gradients via backpropagation

• The backpropagation algorithm is a much faster and more efficient method for
computing gradients for neural network parameters

• It made training large neural networks feasible and practical

• Backpropagation works “backward” through the network, which allows for:

• reusing gradient values that have already been computed

• computing matrix-vector products rather than matrix-matrix products, since
the loss is a scalar!

• It’s pretty confusing the first (or second, or third, …) time you see it
19

Backpropagation: the math

first, let’s do the “forward pass” through our network, from input to prediction

let’s work with two hidden layers, for concreteness

20

x a(2)

nonlinear 
layer

a(1)

nonlinear 
layer

z

linear
layer

softmax

Backpropagation: the math

 represents our logitsz = Wfinala(2) + bfinal

21

x a(2)

nonlinear 
layer

a(1)

nonlinear 
layer

z

linear
layer

softmax

Backpropagation: the math

first let’s look at and

remember: , and also

∇Wfinalℓ ∇bfinalℓ

ℓ = log∑ exp z − zyi
z = Wfinala(2) + bfinal

22

x a(2)

nonlinear 
layer

a(1)

nonlinear 
layer

z

linear
layer

softmax

Backpropagation: the math

now let’s look at and

remember: , and also

a pattern emerges… do you see it?

∇W(2)ℓ ∇b(2)ℓ

a(2) = σ(z(2)) z(2) = W(2)a(1) + b(2)

23

x a(2)

nonlinear 
layer

a(1)

nonlinear 
layer

z

linear
layer

softmax

Backpropagation: the summary

• First, we perform a forward pass and cache all the intermediate ,

• Then, we work our way backwards to compute all the ,

• Going backwards allows us to reuse gradients that have already been computed

• It also results in matrix-vector product computations, which are far more efficient
than matrix-matrix product computations

• After all the gradients have been computed, we are ready to take a gradient step

• Neural network optimization repeats this over and over — more on that next week

z(l) a(l)

∇W(l)ℓ ∇b(l)ℓ

24

Confused?

• Backpropagation can be tricky and unintuitive

• What can help is trying to work out the math on your own to see the patterns

• Implementing it for HW1 should also help solidify the concept

• But, most importantly: we don’t have to do it ourselves these days!

• Deep learning libraries do it for us

• Next lecture, Matt Johnson will come tell you how that’s done in a general and
efficient way — a can’t miss lecture!

25

