
2022/01/26

Lecture 3: ML review (2)
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• Last lecture, we laid out the general machine learning method, and we defined
probabilistic models (for classification), likelihood based loss functions, and
gradient based optimization

• Now that we have a general recipe for how to learn parameters, we can ask:

• If my learned parameters minimize the training loss, am I done? Should I
deploy my model and move on?

• How do I determine whether I am “satisfied” with the model?

• What can I do if I am not satisfied with the model?

2

True risk and empirical risk

• Risk is defined as expected loss:

• This is sometimes called true risk to distinguish from empirical risk below

• Empirical risk is the average loss on the training set:

• Supervised learning is oftentimes empirical risk minimization (ERM)
• Is this the same as true risk minimization?

R(θ) = ![ℓ(θ; x, y)]

R̂(θ) = 1
N

N

∑
i=1

ℓ(θ; xi, yi)

3

True risk and empirical risk

• The empirical risk looks just like a Monte Carlo estimate of the true risk, so
shouldn’t we have ? Why might this not be the case?

• Intuitively, the issue here is that we are already using the training dataset to
learn — we can’t “reuse” the same data to then get an estimate of the risk!

• When the empirical risk is low, but the true risk is high, we are overfitting

• When the empirical risk is high, and the true risk is also high, we are underfitting

R̂(θ) ≈ R(θ)

θ

4

Overfitting and underfitting

• When the empirical risk is low, but the true risk is high, we are overfitting

• This can happen if the dataset is too small and/or the model is too “powerful”

• When the empirical risk is high, and the true risk is also high, we are underfitting

• This can happen if the model is too “weak” and/or the optimization doesn’t
work well (i.e., the training loss does not decrease satisfactorily)

• What constitutes “high”? Often, that is up to the practitioner — that is, one
must ask: “How well do I expect my model to work for this problem?”

• Generally, the true risk won’t be lower than the empirical risk
5

Model class and capacity

• We use the term model class to describe the set of all possible functions that
the chosen model can represent via different parameter settings

• E.g., the set of all linear functions, the set of all neural network functions with a
certain network architecture, …

• Roughly speaking, the capacity of a model (class) is a measure of how many
different functions it can represent

• E.g., neural networks have greater capacity than linear models, because neural
networks can represent linear functions and more

6

Questions for the rest of the lecture

• How do we know whether/if we are overfitting or underfitting?

• Given a dataset of a particular size, how do we select:

• a model class?

• an algorithm?

• hyperparameters?

7

Diagnosing overfitting and underfitting

• As mentioned, we cannot rely on the empirical risk being an accurate
estimate of the true risk

• But we need to estimate in order to diagnose overfitting and underfitting!

• What’s the problem? We want to use the dataset for two purposes: learning
and estimating

• This suggests a natural solution: divide the dataset into two parts, one part for
learning and one part for estimating

R̂(θ)
R(θ)

R(θ)
θ

R(θ)

θ R(θ)

8

the dataset

Training and validation sets

• We use the training set for training, i.e., learning

• The loss on the training set also informs us of whether or not the
empirical risk is “high” — if so, we are underfitting

• Thus, we also use the training set for making sure that the
optimization is working, i.e., decreasing training loss satisfactorily

• We reserve the validation set for diagnosing overfitting

• The loss on the validation set should be an accurate estimate of
the true risk, thus we can compare losses on these two sets

θ

9

training set

validation set

Remember: the machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

10

Introducing: the machine learning workflow

1. Learn on the training set
• if the training loss is not low enough…
• you are underfitting! increase model capacity, improve optimizer, …
• and go back to step 1

2. Measure loss on the validation set
• if the training loss is much smaller than the validation loss…
• you are overfitting! decrease model capacity, collect more data, …
• and go back to step 1

3. Not overfitting or underfitting? You’re done

θ

11

training set

validation set

You’re done?

12

• What does “you’re done” mean?

• In industry, maybe it means: deploy your model

• In research, competitions, this class, etc., it means: report your
model’s performance on a test set

• The test set is reserved for reporting final performance only and
must never, ever be used for anything else

training set

validation set

test set

Combating overfitting

• Generally, underfitting is not as common of a concern as overfitting

• Especially with deep learning, we can just keep making the network bigger…

• … sometimes even without regard for overfitting! More on this later

• What tools and techniques do we have at our disposal if overfitting does occur?

• Make the network smaller? But we like big models

• Collect more data? This is a great option, if possible

• Add more inductive biases — let’s discuss how to do this via regularization
13

Regularization

• Broadly speaking, a regularizer is anything we add to the loss function and/or
optimization that does not depend on the data

• We add it to encode some prior belief about what a “good” model looks like —
hence, it is a form of inductive bias

• Bayesian perspective: we can think of many forms of regularization as switching
from a maximum likelihood approach to a maximum a posteriori (MAP) approach

• I.e., from to arg max
θ

N

∑
i=1

log pθ(yi |xi) arg max
θ

N

∑
i=1

log p(yi |xi, θ) + log p(θ)

14

Maximum a posteriori estimation

• MLE is equivalent to optimizing the negative log likelihood (NLL) loss function

• MAP estimation is equivalent to adding a regularizer to the NLL loss function, in the
form of

• What might be a reasonable choice for this regularizer?

• By far the most commonly used regularizer, when interpreted through the lens of MAP,
can be thought of as setting

• Then, we have , where

−log p(θ)

p(θ) = %(θ; 0, σ2I)

−log p(θ) =
D

∑
i=1

1
2

θ2
i

σ2 + const. = λ∥θ∥2
2 λ = 1

2σ2

15

-regularizationℓ2

• With this choice of regularization, our final summed loss becomes

 — we call this -regularization

• We usually pick directly rather than specifying — thus, is a hyperparameter

• Why is this a good idea? Smaller parameters typically correspond to smoother
functions that change less dramatically as the input changes

• You may have already seen this regularizer before in ridge regression

• In classification, this is often (somewhat erroneously) referred to as weight decay

N

∑
i=1

− log p(yi |xi, θ) + λ∥θ∥2
2 ℓ2

λ σ2 λ

16

Perspectives on regularization

• From a Bayesian perspective, the regularizer encodes our prior beliefs about
which parameters are (or should be) more likely vs. less likely

• We can also interpret regularization through other perspectives:

• Numerical perspective: sometimes the regularizer makes an underdetermined
problem well determined

• Optimization perspective: sometimes the regularizer makes the loss function
better conditioned and thus easier to “traverse”

• Paradoxically, more regularization can actually lead to less underfitting!

17

Recap

• So far: how do we know whether/if we are overfitting or underfitting?

• By measuring and comparing training set loss vs. validation set loss

• Then, we “tune the knobs” of model capacity, optimization, regularization, …

• Next: given a dataset of a particular size, how do we select settings for these knobs?

• There are two approaches to answering this question that seem somewhat at odds:
the “traditional”/statistical approach, which posits a “bias-variance tradeoff”, and the
“deep learning” approach, which suggests that we just keep cranking the knobs up

• Resolving the apparent inconsistency between these two views is the subject of much
ongoing research

18

A probabilistic model for continuous outputs

for this part, we’ll focus on regression, where the outputs are real values

we are given

we assume the data was sampled according to

how do we define a model that outputs a distribution over ? one option:

y ∈ ℝ
= {(x1, y1), …, (xN, yN)}

y |x

19

E N 0 02

X Px Y I X f x t

Y X n NCfo X 1 the negative log likelihood loss is

logpal yil xi t fo xi yo t const
W r t O

Intuition: bias and variance

• Since we assume the training data was randomly sampled, we can ask the
question: how does our model change for different training sets?

• If the model is overfitting, it will learn a different function for each training set

• If the model is underfitting, it learns similar functions, even if we combine all the
training sets together — and all the learned functions are bad

'

20

underfittingoverfitting

The bias-variance decomposition (“tradeoff”)

let’s take a look at expected error for a test point , where the expectation is
over different training datasets :

let be the expected prediction for , where the expectation is again over the
different training datasets (and the parameters that would be learned)

(x⋆, y⋆)
'

f̄(x⋆) x⋆

21

let 0 D be the MLE for D let to foes

IE f x y I
this is the only RV

JC x LEIF x

The bias-variance decomposition (“tradeoff”)

22

IE fo x y

IE fo x f x f x y I j ty
IE I Cf x f x I IEflytflx.gg
IE f x F X F X f x I a

ICx fall t

Etcf Y ÉY
to

The bias-variance decomposition

• So:

• The first term is called — how wrong is the model on expectation,
regardless of the dataset it is trained on?

• The second term is Variance — regardless of the true function , how much
does the model change based on the training dataset?

• The last term is irreducible error — i.e., the noise in the data process itself

• So far, this is just a decomposition — where is the “tradeoff”?

![(fθ(")(x′) − y′)2] = (f̄(x′) − f(x′))2 + ![(fθ(")(x′) − f̄(x′))2] + σ2

Bias2

f

23

The bias-variance tradeoff?

• Traditional statistics views bias and variance as “competing” sources of error that
are regulated by model complexity

• High variance means insufficient data + a complex model class — overfitting

• High bias means an insufficiently complex model class — underfitting

24

underfittingoverfitting

Enter the deep learning perspective…
Allow me to quote Prof. Jitendra Malik

• “Modern neural network practice doesn’t treat this as a tradeoff — go as high
capacity as you can (e.g., networks like GPT-3 push the boundary of current
computational hardware)”

• “We don’t fear overfitting!”

25

