Lecture 3: ML review (2)

CS 182/282A (“Deep Learning”)

2022/01/26

Today’s lecture

e [ast lecture, we laid out the general machine learning method, and we defined
probabilistic models (for classification), likelihood based loss functions, and
gradient based optimization

* Now that we have a general recipe for how to learn parameters, we can ask:

e [f my learned parameters minimize the training loss, am | done? Should |
deploy my model and move on?

e How do | determine whether | am “satisfied” with the model?

e What can | do if | am not satisfied with the model?

True risk and empirical risk

* Risk is defined as expected loss: R(0) = E[£(0; X, y)]

e This is sometimes called true risk to distinguish from empirical risk below

. 1 <
., Empirical risk is the average loss on the training set: R(0) = — Z £(0;x;,y,)
N i=1
e Supervised learning is oftentimes empirical risk minimization (ERM)

e |s this the same as true risk minimization?

True risk and empirical risk

* The empirical risk looks just like a Monte Carlo estimate of the true risk, so
shouldn’t we have R(60) ~ R(6)? Why might this not be the case?

e |ntuitively, the issue here is that we are already using the training dataset to
learn @ — we can’t “reuse” the same data to then get an estimate of the risk!

* When the empirical risk is low, but the true risk is high, we are overfitting

* When the empirical risk is high, and the true risk is also high, we are underfitting

Overfitting and underfitting

e \When the empirical risk is low, but the true risk is high, we are overfitting
e This can happen if the dataset is too small and/or the model is too “powerful”
* \When the empirical risk is high, and the true risk is also high, we are underfitting

e This can happen if the model is too “weak” and/or the optimization doesn’t
work well (i.e., the training loss does not decrease satisfactorily)

e \What constitutes “high”? Often, that is up to the practitioner — that is, one
must ask: “How well do | expect my model to work for this problem?”

e Generally, the true risk won’t be lower than the empirical risk

5

Model class and capacity

* We use the term model class to describe the set of all possible functions that
the chosen model can represent via different parameter settings

e E.g., the set of all linear functions, the set of all neural network functions with a
certain network architecture, ...

e Roughly speaking, the capacity of a model (class) is a measure of how many
different functions it can represent

e E.g., neural networks have greater capacity than linear models, because neural
networks can represent linear functions and more

Questions for the rest of the lecture

 How do we know whether/if we are overfitting or underfitting”?
e (iven a dataset of a particular size, how do we select:

e a model class?

e an algorithm??

 hyperparameters”

Diagnosing overfitting and underfitting

e As mentioned, we cannot rely on the empirical risk IAQ(H) being an accurate
estimate of the true risk R(6)

e But we need to estimate R(6) in order to diagnose overfitting and underfitting!

e What'’s the problem? We want to use the dataset for two purposes: learning &
and estimating R(6)

e This suggests a natural solution: divide the dataset into two parts, one part for
learning @ and one part for estimating R(6)

Training and validation sets

e We use the training set for training, i.e., learning 0

* The loss on the training set also informs us of whether or not the
empirical risk is “high” — if so, we are underfitting

training set

e Thus, we also use the training set for making sure that the
optimization is working, i.e., decreasing training loss satisfactorily

e \We reserve the validation set for diagnosing overfitting

* The loss on the validation set should be an accurate estimate of
validation set the true risk, thus we can compare losses on these two sets

Remember: the machine learning method

(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, ...
2. Define your loss function — which parameters are good vs. bad?
3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

10

Introducing: the machine learning workflow

1. Define your model

2. Define your loss function

3. Define your optimizer

1. [Learn @ on the training set

4. Run it on a big GPU

* if the training loss is not low enough...

* you are underfitting! increase model capacity, improve optimizer, ...
training set * and go back to step 1

2. Measure loss on the validation set
* if the training loss is much smaller than the validation loss...

* you are overfitting! decrease model capacity, collect more data, ...
* and go back to step 1

validation set

3. Not overfitting or underfitting? You’re done

11

You’re done”?

e \What does “you’re done” mean”?

e |n industry, maybe it means: deploy your model

training set

e |n research, competitions, this class, etc., it means: report your
model’s performance on a test set

* The test set is reserved for reporting final performance only and

o must never, ever be used for anything else
validation set

test set

—
e

12

Combating overfitting

e Generally, underfitting is not as common of a concern as overfitting
e Especially with deep learning, we can just keep making the network bigger...
e ... sometimes even without regard for overfitting! More on this later

e \What tools and techniques do we have at our disposal if overfitting does occur?
e Make the network smaller? But we like big models
e Collect more data? This is a great option, if possible

e Add more inductive biases — let’s discuss how to do this via regularization

13

Regularization

* Broadly speaking, a regularizer is anything we add to the loss function and/or
optimization that does not depend on the data

* We add it to encode some prior belief about what a “good” model looks like —
hence, it is a form of inductive bias

* Bayesian perspective: we can think of many forms of regularization as switching
from a maximum likelihood approach to a maximum a posteriori (MAP) approach

N N
.e., from arg max Z log py(y;| X;) to arg max Z log p(y;|x;, 0) + log p(60)
) O = O =

14

Maximum a posteriori estimation

* MLE is equivalent to optimizing the negative log likelihood (NLL) loss function

 MAP estimation is equivalent to adding a regularizer to the NLL loss function, in the
form of —log p(6)

e What might be a reasonable choice for this regularizer?
e By far the most commonly used regularizer, when interpreted through the lens of MAP,

can be thought of as setting p(0) = 4 (6;0, 6°I)

D 2
1 6
. Then, we have —log p(0) = Z 5—12 + const. = /1||9||% , Where 4 =
o
i=1

N ‘

O

15

£»-regularization

. W]\i]th this choice of regularization, our final summed loss becomes

2 — logp(y;|x;,0) + /1||9||% — we call this &5-regularization
i=1
« We usually pick A directly rather than specifying 6> — thus, 4 is a hyperparameter

* Why is this a good idea” Smaller parameters typically correspond to smoother
functions that change less dramatically as the input changes

* You may have already seen this regularizer before in ridge regression

* |n classification, this is often (somewhat erroneously) referred to as weight decay

16

Perspectives on regularization

 From a Bayesian perspective, the regularizer encodes our prior beliefs about
which parameters are (or should be) more likely vs. less likely

* We can also interpret regularization through other perspectives:

e Numerical perspective: sometimes the regularizer makes an underdetermined
problem well determined

e Optimization perspective: sometimes the regularizer makes the loss function
better conditioned and thus easier to “traverse”

» Paradoxically, more regularization can actually lead to less underfitting!

17

Recap

e So far: how do we know whether/if we are overfitting or underfitting”?
* By measuring and comparing training set loss vs. validation set loss
* Then, we “tune the knobs” of model capacity, optimization, regularization, ...
e Next: given a dataset of a particular size, how do we select settings for these knobs?

* There are two approaches to answering this question that seem somewhat at odds:
the “traditional’/statistical approach, which posits a “bias-variance tradeoff’, and the
“deep learning” approach, which suggests that we just keep cranking the knobs up

* Resolving the apparent inconsistency between these two views is the subject of much
ongoing research

18

A probabillistic model for continuous outputs
==

for this part, we'll focus on regression, where the outputs y € R are real values
e~)((01 0‘;)

we assume the data was sampled according to X ~ ‘)*) | \ R= 5()() tE

we are given & = {(Xl,yl), ey (XN, yN)}

how do we define a model that outputs a distribution over y | X? one option:

YIX ~ N(-}o(X), 8) ™e msu\'\'« \03 \ike\ihood loss is

- oy ol i) xa) = 5 (o) -y)t e Comste

Inturtion; bias and variance

 Since we assume the training data & was randomly sampled, we can ask the
question: how does our model change for different training sets”?

 |[f the model is overfitting, it will learn a different function for each training set

* |f the model is underfitting, it learns similar functions, even if we combine all the
training sets together — and all the learned functions are bad

overfitting underfitting

7

P sl

The bias-variance decomposition (“tradeoff”)
— (Lt B(R) be e MLE for b, (et ‘}b: S'e(b‘))

let’s take a look at expected error for a test point (X*, y*), where the expectation is
over different training datasets <:

|E[(‘S'b()&')- Y')1]
T s © e only !

let f(X*) be the expected prediction for x*, where the expectation is again over the
different training datasets (and the parameters that would be learned)

$(x) = E[§,(x)]

The bias-variance decomposition (“tradeoft’)
e EL(5p(x') -y)‘]

EL(Fnalx')- $(x') + £(x')-y')1] ;h.]

= E[(55(x)-5(x0))+ €[(y - 50T

= EL(Sp(x') = FOR)+ F(R) - §())+] +0*

= (F(x)- 5(x))" + ELGL (- BN + 6%

——————————

G'l

The bias-variance decomposition

o S0: E[(fygn(X) =)1 = (X)) = AX))* + El(fyg(X) = f(X))’] + 67

e The first term is called Bias? — how wrong is the model on expectation,
regardless of the dataset it is trained on?

e The second term is Variance — regardless of the true function f, how much
does the model change based on the training dataset?

e The last term is irreducible error — i.e., the noise in the data process itself

e SO far, this is just a decomposition — where is the “tradeoff””?

23

The bias-variance tradeoft?

e Traditional statistics views bias and variance as “competing” sources of error that
are regulated by model complexity

* High variance means insufficient data + a complex model class — overfitting

e High bias means an insufficiently complex model class — underfitting

A

overfitting underfitting

nYaYuNNaNEY S E

24

Optimum Model Complexity

Model Complexity

Enter the deep learning perspective. ..
Allow me to quote Prof. Jitendra Malik

* “Modern neural network practice doesn’t treat this as a tradeoff — go as high
capacity as you can (e.g., networks like GPT-3 push the boundary of current
computational hardware)”

* “We don’t fear overfitting!”

A under-fitting . over-fitting B under-parameterized over-parameterized
. Test risk Test risk

'% . "é “classical” “modern”
E Q":' regime interpolating regime

N { . ‘

~ o ‘Training risk Training risk:
sweet spt)t\:. - _ =~ .‘/interpolatinn threshold
Capacity of H Capacity of H

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the blas-variance trade-off. (8) The
double-descent risk curve, which Incorporates the U-shaped risk curve (L.e., the "classical” regime) together with the observed behavior from using high-
capacity function classes (L.e., the "modern” Interpolating regime), separated by the Interpolation threshold. The predictors to the right of the Interpolation
threshold have zero training risk.

25

