
2022/01/24

Lecture 2: ML review (1)
CS 182/282A (“Deep Learning”)

1

Today’s lecture

• In this lecture and the next lecture, we will go over concepts at the core of
machine learning as a whole

• We will focus on concepts that are the most relevant to deep learning

• Much of this will be review if you have already taken a machine learning course

• Today, we will focus on the supervised learning problem setup, go over the
general machine learning method, and define probabilistic models, likelihood
based loss functions, and gradient based optimization

2

Different classes of learning problems
(non exhaustive)

3

Supervised learning

Unsupervised learning

Reinforcement learning

Let’s start with supervised learning

4

Supervised learning

• In supervised learning, we are given a dataset

• Our goal is to learn a model that predicts outputs given inputs:

• This setup encompasses the overwhelming majority of machine learning that is
used in industry (a multi-billion $/year industry)

• The basic principles are simple, and we will cover them in this lecture

! = {(x1, y1), …, (xN, yN)}
fθ(x) = y

5

Examples of supervised learning problems
(that deep learning has done really well on)

6

image of object category of object

sentence in English sentence in French

audio utterance text of what was said

amino acid sequence 3D protein structure

x y

Should the model just output ?y
What could go wrong?

7

Image 0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

0% 0% 0% 60% 0% 35% 0% 0% 0% 5%

0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

30% 0% 70% 0% 0% 0% 0% 0% 0% 0%

Predicting probabilities

• Often, it makes more sense to have the model predict output probabilities, rather
than the outputs themselves

• This can better capture when the model is uncertain about difficult inputs

• We’ll also see later why this makes the learning process easier

• So instead of the model output being a single , it will instead be an entire
distribution over all possible !

• E.g., for digit recognition, the output will be 10 numbers between 0 and 1 that
sum to 1

fθ(x) y
y

8

How do we output probabilities?

• How do we make our model output numbers between 0 and 1 that sum to 1?

• Idea: first let our model output whatever numbers it wants

• Then, make all the numbers positive and normalize (divide by the sum)

• There are many ways to make a number positive

• In this context, the most commonly used choice is , which is bijective

• In this case, the (raw) model outputs are called logits

z

exp(z)

9

A probabilistic model for discrete labels

if there are possible labels, then is a vector of length

we represent the final probabilities using the softmax function:

(aside: sometimes, is used to denote , but I won’t do that)

K fθ(x) K

fθ(x) arg max
y

pθ(y |x)

10

exp to x
softmaxltolxhe

gqexpgf.ly
Poly c x

Some examples of the softmax function

11

supposing , let’s work through some examples

K = 4
softmax([0, 0, 0, 0])
softmax([-100, -100, -100, -100])
softmax([0, 0, 100, 0])
softmax([-100, -100, 0, -100])
softmax([2, 1, 0, 0])

0.25 0.25 0.25 0.251
0.25 0.25 0.25 0.251

I O O 1 01
I O O 1 01

0.6103 0.2245 0 0826 0.08261

Recap

• So far, we have defined what our probabilistic model is going to look like

• In the case of discrete labels, it will output numbers that will be
exponentiated and normalized to form an output distribution

• What else do we need?

• How do we know whether or not the model parameters are good?

• How do we find good parameters?

K

12

The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

13

The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

14

What loss function should we use?

• In deciding on a loss function, we have a few desiderata:

• If our parameters perfectly explain the data, we should incur minimal loss

• The loss should be “easy” to optimize

• We don’t want to have to engineer new loss functions for every problem

• We will satisfy these desiderata by leveraging the most widely used tool in
statistical inference — maximum likelihood estimation (MLE)

15

The maximum likelihood principle

given data

assume a set (family) of distributions on

the parameters dictate the conditional distribution of given

the objective/definition:

! = {(x1, y1), …, (xN, yN)}
(x, y)

θ y x

16

Po x y p x poly x

pit O e

assume some palate generated D

recover8 sortof

once argmax p D 10 ang max T p xi polyilxiOE O OE O is

From MLE to a loss function

we are given

our goal is to find

working with a product of terms is tricky and messy…

idea: take the instead! this leads to the negative log likelihood loss function:

(usually, we divide by to work with average loss rather than summed loss)

! = {(x1, y1), …, (xN, yN)}

log

N
17

arg X II p xi polyi Xi

and EI É logp xi t logpolyi t x logPolly l xi
Tconstantwig 82 I slogpolyil l o Xi Yi

The negative log likelihood loss function

this loss is oftentimes called the cross-entropy loss — what is cross-entropy?

let’s plug in (the true data distribution) for and some for :

maximizing log likelihood is approximately equivalent to minimizing cross-entropy!

pdata p pθ q

18

HIP g EPIX logg x Ept loggia

constant war.tHIPdata Po 1Epdayat logpoll Y y o

IEpaa.t logplxl logp.ly X7 fg logplxil logpolyilxi

Should we use the negative log likelihood loss?
Revisiting our desiderata

• If our parameters perfectly explain the data, we should incur minimal loss

• Given sufficient data, the log likelihood is maximized by the “true” parameters, if
our model is able to represent the underlying data distribution

• This is related to an attractive property of MLE called consistency

• The loss should be “easy” to optimize — more on this next

• We don’t want to have to engineer new loss functions for every problem

• Many commonly used loss functions, such as squared error for regression,
can be derived/motivated from log likelihood for different modeling assumptions

19

The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

20

What optimizer should we use?

• Deep learning relies on iterative optimization to find good parameters

• Starting from an initial “guess”, continually refine that guess until we are
satisfied with our final answer

• By far the most commonly used set of iterative optimization techniques in deep
learning is (first order) gradient based optimization and variants thereof

• Basically, move the parameters in the direction of the negative gradient of the

average loss: θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

21

Synergy between loss function and optimizer

• The gradient tells us how the loss value changes for small parameter changes

• We decrease the loss if we move (with a small enough) along the direction of
the negative gradient (basically, go “opposite the slope” in each dimension)

• This motivates choosing the loss function and model carefully, such that the loss
function is differentiable with respect to the model parameters

• The negative log likelihood fulfills this for many reasonable problem setups

• What loss function would not be differentiable?

• For example, the 0-1 loss function: 0 if the model is correct, 1 otherwise

α

22

A small example: logistic regression
The “linear neural network”, if we’re being weird

• Given , define , where is a matrix

• Then, for class , we have

• Loss function:

• Optimization:

x ∈ ℝd fθ(x) = θ⊤x θ d × K

c ∈ {0,…, K − 1} pθ(y = c |x) = softmax(fθ(x))c

ℓ(θ; x, y) = − log pθ(y |x)

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)

23

Let’s work this out for binary classification

if we have , then can actually just be a vector! why?K = 2 θ d × 1

24

in general O could be a d x K 1 matrix

if we know ply 01 x we know p y L x

let the class 0 legit be fixed to o.gg
EIY i

let fo x O'x E IR be the logit for class 1

so poly I x softmax to 0 to x E É
l 0 Xi Yi 1 yo log expotx.tt yi ox logfexpotx.tt

exercise Pollo xi Yi EpÉ y x

The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

25

