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Lecture 2: ML review (1)
CS 182/282A (“Deep Learning”)

1

 



Today’s lecture

• In this lecture and the next lecture, we will go over concepts at the core of 
machine learning as a whole 

• We will focus on concepts that are the most relevant to deep learning 

• Much of this will be review if you have already taken a machine learning course 

• Today, we will focus on the supervised learning problem setup, go over the 
general machine learning method, and define probabilistic models, likelihood 
based loss functions, and gradient based optimization
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Different classes of learning problems
(non exhaustive)
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Supervised learning

Unsupervised learning

Reinforcement learning



Let’s start with supervised learning
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Supervised learning

• In supervised learning, we are given a dataset  

• Our goal is to learn a model that predicts outputs given inputs:   

• This setup encompasses the overwhelming majority of machine learning that is 
used in industry (a multi-billion $/year industry) 

• The basic principles are simple, and we will cover them in this lecture

! = {(x1, y1), …, (xN, yN)}
fθ(x) = y
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Examples of supervised learning problems
(that deep learning has done really well on)
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image of object category of object

sentence in English sentence in French

audio utterance text of what was said

amino acid sequence 3D protein structure

x y



Should the model just output ?y
What could go wrong?
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Image 0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

0% 0% 0% 60% 0% 35% 0% 0% 0% 5%

0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

30% 0% 70% 0% 0% 0% 0% 0% 0% 0%



Predicting probabilities

• Often, it makes more sense to have the model predict output probabilities, rather 
than the outputs themselves 

• This can better capture when the model is uncertain about difficult inputs 

• We’ll also see later why this makes the learning process easier 

• So instead of the model output   being a single , it will instead be an entire 
distribution over all possible ! 

• E.g., for digit recognition, the output will be 10 numbers between 0 and 1 that 
sum to 1

fθ(x) y
y
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How do we output probabilities?

• How do we make our model output numbers between 0 and 1 that sum to 1? 

• Idea: first let our model output whatever numbers it wants 

• Then, make all the numbers positive and normalize (divide by the sum) 

• There are many ways to make a number  positive 

• In this context, the most commonly used choice is , which is bijective 

• In this case, the (raw) model outputs are called logits

z

exp(z)
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A probabilistic model for discrete labels

if there are  possible labels, then   is a vector of length  

we represent the final probabilities using the softmax function: 

(aside: sometimes,   is used to denote , but I won’t do that)

K fθ(x) K

fθ(x) arg max
y

pθ(y |x)
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exp to x
softmaxltolxhe
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Some examples of the softmax function
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supposing , let’s work through some examples 

 

 

 

 

K = 4
softmax([0, 0, 0, 0])
softmax([-100, -100, -100, -100])
softmax([0, 0, 100, 0])
softmax([-100, -100, 0, -100])
softmax([2, 1, 0, 0])

0.25 0.25 0.25 0.251
0.25 0.25 0.25 0.251

I O O 1 01
I O O 1 01

0.6103 0.2245 0 0826 0.08261



Recap

• So far, we have defined what our probabilistic model is going to look like 

• In the case of discrete labels, it will output  numbers that will be 
exponentiated and normalized to form an output distribution 

• What else do we need? 

• How do we know whether or not the model parameters are good? 

• How do we find good parameters?

K
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The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, … 

2. Define your loss function — which parameters are good vs. bad? 

3. Define your optimizer — how do we find good parameters? 

4. Run it on a big GPU
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The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, … 

2. Define your loss function — which parameters are good vs. bad? 

3. Define your optimizer — how do we find good parameters? 

4. Run it on a big GPU
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What loss function should we use?

• In deciding on a loss function, we have a few desiderata: 

• If our parameters perfectly explain the data, we should incur minimal loss 

• The loss should be “easy” to optimize 

• We don’t want to have to engineer new loss functions for every problem 

• We will satisfy these desiderata by leveraging the most widely used tool in 
statistical inference — maximum likelihood estimation (MLE)
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The maximum likelihood principle

given data  

assume a set (family) of distributions on  

the parameters  dictate the conditional distribution of  given  

the objective/definition:

! = {(x1, y1), …, (xN, yN)}
(x, y)

θ y x
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From MLE to a loss function

we are given  

our goal is to find 

working with a product of terms is tricky and messy… 

idea: take the  instead! this leads to the negative log likelihood loss function: 

(usually, we divide by  to work with average loss rather than summed loss)

! = {(x1, y1), …, (xN, yN)}

log

N
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The negative log likelihood loss function

this loss is oftentimes called the cross-entropy loss — what is cross-entropy? 

let’s plug in  (the true data distribution) for  and some  for : 

maximizing log likelihood is approximately equivalent to minimizing cross-entropy!

pdata p pθ q
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Should we use the negative log likelihood loss?
Revisiting our desiderata

• If our parameters perfectly explain the data, we should incur minimal loss 

• Given sufficient data, the log likelihood is maximized by the “true” parameters, if 
our model is able to represent the underlying data distribution 

• This is related to an attractive property of MLE called consistency 

• The loss should be “easy” to optimize — more on this next 

• We don’t want to have to engineer new loss functions for every problem 

• Many commonly used loss functions, such as squared error for regression, 
can be derived/motivated from log likelihood for different modeling assumptions
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The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, … 

2. Define your loss function — which parameters are good vs. bad? 

3. Define your optimizer — how do we find good parameters? 

4. Run it on a big GPU
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What optimizer should we use?

• Deep learning relies on iterative optimization to find good parameters 

• Starting from an initial “guess”, continually refine that guess until we are 
satisfied with our final answer 

• By far the most commonly used set of iterative optimization techniques in deep 
learning is (first order) gradient based optimization and variants thereof 

• Basically, move the parameters in the direction of the negative gradient of the 

average loss: θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)
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Synergy between loss function and optimizer

• The gradient tells us how the loss value changes for small parameter changes 

• We decrease the loss if we move (with a small enough ) along the direction of 
the negative gradient (basically, go “opposite the slope” in each dimension) 

• This motivates choosing the loss function and model carefully, such that the loss 
function is differentiable with respect to the model parameters 

• The negative log likelihood fulfills this for many reasonable problem setups 

• What loss function would not be differentiable? 

• For example, the 0-1 loss function: 0 if the model is correct, 1 otherwise

α
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A small example: logistic regression
The “linear neural network”, if we’re being weird

• Given , define  , where  is a  matrix 

• Then, for class , we have  

• Loss function:  

• Optimization: 

x ∈ ℝd fθ(x) = θ⊤x θ d × K

c ∈ {0,…, K − 1} pθ(y = c |x) = softmax( fθ(x))c

ℓ(θ; x, y) = − log pθ(y |x)

θ ← θ − α∇θ
1
N

N

∑
i=1

ℓ(θ; xi, yi)
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Let’s work this out for binary classification

if we have , then  can actually just be a  vector! why?K = 2 θ d × 1
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if we know ply 01 x we know p y L x

let the class 0 legit be fixed to o.gg
EIY i

let fo x O'x E IR be the logit for class 1

so poly I x softmax to 0 to x E É
l 0 Xi Yi 1 yo log expotx.tt yi ox logfexpotx.tt

exercise Pollo xi Yi EpÉ y x



The machine learning method
(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, … 

2. Define your loss function — which parameters are good vs. bad? 

3. Define your optimizer — how do we find good parameters? 

4. Run it on a big GPU

25


