Lecture 2: ML review (1)

CS 182/282A (“Deep Learning”)

2022/01/24

Today’s lecture

e |n this lecture and the next lecture, we will go over concepts at the core of
machine learning as a whole

* \We will focus on concepts that are the most relevant to deep learning
e Much of this will be review if you have already taken a machine learning course

e Joday, we will focus on the supervised learning problem setup, go over the
general machine learning method, and define probabilistic models, likelihood
based loss functions, and gradient based optimization

Different classes of learning problems

(non exhaustive)

Supervised learning

Unsupervised learning

Reinforcement learning

rewar action
% T
141

Let’'s start with supervised learning

Supervised learning

In supervised learning, we are given a dataset & = {(X{, Y1), ---» Xp> V) }

Our goal is to learn a model that predicts outputs given inputs: fy(X) =y

This setup encompasses the overwhelming majority of machine learning that is
used in industry (a multi-billion $/year industry)

The basic principles are simple, and we will cover them in this lecture

Examples of supervised learning problems

(that deep learning has done really well on)

X Y

image of object category of object
sentence in English sentence in French
audio utterance text of what was said

amino acid sequence 3D protein structure

Should the model just output y?

What could go wrong?

Image

0?

1?

2?

3?

4?

5?

6?

7?

8?

9?

2

0%

0%

0%

60%

0%

35%

0%

0%

0%

5%

&

0%

0%

0%

0%

50%

0%

0%

0%

0%

50%

4

30%

0%

70%

0%

0%

0%

0%

0%

0%

0%

Predicting probabllities

e Often, it makes more sense to have the model predict output probabilities, rather
than the outputs themselves

e This can better capture when the model is uncertain about difficult inputs

o We'll also see later why this makes the learning process easier

* So instead of the model output fy(X) being a single y, it will instead be an entire
distribution over all possible y!

e E.g., for digit recognition, the output will be 10 numbers between O and 1 that
sum to 1

How do we output probabilities?

e How do we make our model output numbers between O and 1 that sum to 17?
e |dea: first let our model output whatever numbers it wants

e Then, make all the numbers positive and normalize (divide by the sum)
e There are many ways to make a number z positive

e In this context, the most commonly used choice is exp(z), which is bijective

e |n this case, the (raw) model outputs are called logits

A probabilistic model for discrete labels
==

if there are K possible labels, then f,(X) is a vector of length K

we represent the final probabilities using the softmax function:

e *0 c
seftman (§(x)). = K*v((x).}
%"“?ifo(*)a}

* foly=elx)

(aside: sometimes, f,(X) is used to denote arg max py(y | X), but | won’t do that)
y

Some examples of the softmax function
=

supposing K = 4, let’s work through some examples

softmax([0, 0, 0, 0]) = [0.15,0A5,9.L5,0.25]
softmax([-100, -100, -100, -100]) = (025,015 ,0.15,0.25]
softmax([0, 0, 100, 0]) % (o, 0,1L.0]

softmax([-100, -100, 0, -100]) # (0,0,4,01

softmax([2, 1, 0, 0]) = (0.6403 , 0.714S , 0. 0%16, 0.0826]

11

Recap

e So far, we have defined what our probabilistic model is going to look like

* In the case of discrete labels, it will output K numbers that will be
exponentiated and normalized to form an output distribution

e What else do we need?
e How do we know whether or not the model parameters are good”?

e How do we find good parameters?

12

The machine learning method

(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, ...
2. Define your loss function — which parameters are good vs. bad?
3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

13

The machine learning method

(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, ...

@eﬁne your loss fun@ which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

14

What loss function should we use?

* |n deciding on a loss function, we have a few desiderata:
e |f our parameters perfectly explain the data, we should incur minimal loss
e The loss should be “easy” to optimize
* We don’t want to have to engineer new loss functions for every problem

e We will satisfy these desiderata by leveraging the most widely used tool in
statistical inference — maximum likelihood estimation (MLE)

15

The maximum likelihood principle
=

givendata I = {(X{,), -, Xns Yy) } Po("‘"/) qu (’9(‘/ 1)

assume a set (family) of distributions on (X,) { P ° e @}
0SSUME SoMe Py '3mvmku‘ D

the parameters @ dictate the conditional distribution of y given x

N
the objective/definition: "pusdef " (sord oF)

e = “20% p(DI0) = P T pba)palye 1)

[

From MLE to a loss function
=

we are given 9 = {(Xl,yl), ey (XN, yN)}

N
our goal is to find Noﬂe'“@'* Tl\: p(%—.) P,(c/; ‘x;)

working with a product of terms is tricky and messy...

idea: take the log instead! this leads to the negative log likelihood loss function:

“3:5‘ t§ Q°3 p(*t\ * bﬁ?g(‘/i \x:) - “;3&“5* :%on?g(¥ %i)

o w.c 7 . ‘;’2"@‘;" i—b«;pe(v:\%a\. UCEH Sy

‘st

S

(usually, we divide by N to work with average loss rather than summed loss)

17

The negative log likelihood loss function

this loss is oftentimes called the cross-entropy loss — what is cross-entropy?

H(p.8) = -2 p(x)log 4(x) - lE'[—toga,m]
let’s plug in pgatg (the true data distribution) for p and some py, for g:

H(Pdean , Do) - ‘EN«\-.(’QD5 O (X,Y¥)]) C;ﬂMtew-r.t.
= By, [~Log plx) - Loy po (YIX)] % S -Log o) - Lo g (y: 1%:)

maximizing log likelihood is approximately equivalent to minimizing cross-entropy!

Should we use the negative log likelihood loss?

Revisiting our desiderata

e |f our parameters perfectly explain the data, we should incur minimal loss

e Given sufficient data, the log likelihood is maximized by the “true” parameters, if
our model is able to represent the underlying data distribution

e This is related to an attractive property of MLE called consistency
e The loss should be “easy” to optimize — more on this next
* We don’t want to have to engineer new loss functions for every problem

e Many commonly used loss functions, such as squared error for regression,
can be derived/motivated from log likelihood for different modeling assumptions

19

The machine learning method

(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, ...

2. Define your loss function — which parameters are good vs. bad?

@eﬁne your optim@ how do we find good parameters”?

4. Run it on a big GPU

20

What optimizer should we use”

* Deep learning relies on iterative optimization to find good parameters

e Starting from an initial “guess”, continually refine that guess until we are
satisfied with our final answer

e By far the most commonly used set of iterative optimization techniques in deep
learning is (first order) gradient based optimization and variants thereof

e Basically, move the parameters in the direction of the negative gradient of the

average loss: @ «— 0 — aV ,— Z 2(0;x,,y;)
i=1

21

Synergy between loss function and optimizer

e The gradient tells us how the loss value changes for small parameter changes

e \We decrease the loss if we move (with a small enough a) along the direction of
the negative gradient (basically, go “opposite the slope” in each dimension)

e This motivates choosing the loss function and model carefully, such that the loss
function is differentiable with respect to the model parameters

e The negative log likelihood fulfills this for many reasonable problem setups
e \What loss function would not be differentiable”?

e For example, the 0-1 loss function: O if the model is correct, 1 otherwise

22

A small example: logistic regression

The “linear neural network”, if we’re being weird

Given x € R4, define fo(X) = 0"x, where @ is a d X K matrix

Then, for class ¢ € {0,..., K — 1}, we have py(y = c|X) = softmax(fy(X)),

Loss function: £(0; X, y) = — log py(y | X)

|
Optimization: @ «— 6 — aVQN 1221 2(0,X;,y;)

23

Let’s work this out for binary classification

=
(it\ 501\21‘&1,) co__m_lal Ve a dx(h-1) me-krix)

if we have K = 2, then @ can actually just be a d X 1 vector! why?

IF we kv\ow P(Y—. °| ‘) | vie kn\oﬂ ?(\I: L\ X) L\x mw\-«\u«\\Y Sa-ﬁ leekure

—

My AN 'y W O it con

W Akl o poneatioked
ed' ‘fe(x) =O'x et b e \oag-\ Aor dks:i-/m ft ekt <% poneatiok
L e ess O looji e Fired 40 0.0 & - o'x

o Polyz1lx) = softmen (009, §o(x) 1), = o 6T L
L(O 5 xe,y:) = (1-y;) (Log{esp x4 43) -y, (67x - log{ o 8%+ 4.3)

'Y ©' x

The machine learning method

(or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, ...
2. Define your loss function — which parameters are good vs. bad?
3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

25

