
2022/01/19

Lecture 1: Introduction
CS 182/282A (“Deep Learning”)
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Course staff
Enrollment questions: cs-enrollments@berkeley.edu
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General course information
Course website: https://cs182sp22.github.io/

• If and when permitted, this course will be fully in person: lectures, discussions, 
office hours, exams, … 

• Relevant prerequisites: 

• Strong background in probability (CS 70, Stat 134, or similar) 

• Strong background in vector calculus (e.g., can you take the gradient of a 
matrix vector product) 

• Strong background in machine learning is preferred (CS 189, or similar) 

• Strong programming skills in Python (e.g., can you learn new libraries quickly)
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Lectures and recitations
MW 5-6:30pm, Th 4-5pm

• Lectures are on Zoom for now, hopefully in Dwinelle 155 later 

• Lecture recordings will be available some time after the live lecture 

• There will be various guest lectures which may not be recorded 

• Recitations are on Zoom for now, hopefully (and tentatively) in Soda 306 later 

• Recitations are your opportunity to ask questions about the week’s lectures 

• Come to recitations to ask conceptual questions, not homework/exam questions 

• Recitations are not recorded and will not introduce new content
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Discussion sections and office hours
https://cs182sp22.github.io/schedule/

• You are encouraged to attend any discussion section that you like that has room 

• It is very important that you read the office hours policy on Piazza 

• You should come to OH prepared and with reasonable expectations 

• You should actively look for other students working on the same problems 

• You will be limited to a 10 minute window when there is a queue
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Homework assignments
DSP students: sasson@berkeley.edu

• There are four homework assignments total, released every three weeks or so 

• You will have ~2.5 weeks to complete each homework: released Wed, due Sun 

• Each homework assignment is worth 15% of your overall grade 

• There are no homework drops, but there are five total slip days for the semester 
to be reserved for emergencies — no other late homework will be accepted 

• You are encouraged to discuss problems, but the code/writeup must be your 
own — infractions will result in (at least) an immediate zero on the assignment
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Exams
DSP students: krystle@berkeley.edu

• There are two midterm exams for 182 students, both in person if permitted 

• Midterm 1 (worth 20%): Wednesday, 3/2, 7-9pm, Pimentel 1 (no lecture that day) 

• Midterm 2 (worth 20%): some time during the last week of classes, 7-9pm 

• 282A students only take MT1 (and it’s worth 15%) and complete a final project 
(details on next slide) in lieu of MT2 

• There are no alternate exams: if you miss MT1, MT2 is worth 40%; if you miss 
MT2, you receive an incomplete grade 

• Exam infractions are serious are will result in (at least) significant points deducted
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Final project
For CS 282A students only

• In lieu of MT2, CS 282A students will complete an open-ended final project 

• The expected novelty and quality of this project is such that it could reasonably 
be submitted to a research conference or journal, possibly with additional work 

• The final project will be worth 25% of the overall grade for 282A students 

• More details about the final project, including timeline and milestones, will be 
announced as the semester progresses

8



Grading

• This course will be curved at the end after all grades have been computed 

• Do not assume that the final grade distribution will necessarily follow historical 
precedent, e.g., any particular previous semester, previous instructor, …
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What is machine learning? 
What is deep learning?
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What is machine learning?

• Machine learning has three core components: model, optimization, and data 

• The model is a function from inputs to outputs, but it is not programmed by hand 

• Instead, the model has parameters that will be optimized (learned) 

• The optimization algorithm finds (learns) good parameters — more on this later 

• Roughly speaking, parameters are good if they are a good fit for the data 

• The data is what drives this whole process — this course exists because there 
are now massive amounts of data to work with, along with techniques that scale
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What is machine learning?
The “classical” view of machine learning
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A model for classification

a model is a parameterized function:

13

if O x O x t O e 0

return O

else
return x OTx e o

f x O y

to x y



What is machine learning?
The “classical” view of machine learning

“predict  from ” 

But what is ?

y x

x
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What is deep learning?
First: what is ?x
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Il est encore plus facile de juger 
de l'esprit d'un homme par ses 
questions que par ses réponses.



A linear model for image classification?

• Images: e.g., 224 (height in px)  224 (width)  3 (RGB)  150528 dimensional 

• Language: vectors are the size of the vocabulary, so 10000s of dimensions 

• Audio: one second can be, e.g., 16000 time steps of 16-bit integer values

× × =
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What is deep learning?
Deep learning is representation learning

17

Il est encore plus facile de juger 
de l'esprit d'un homme par ses 
questions que par ses réponses.

• Handling complex inputs requires representations 

• The power of deep learning lies in its ability to learn representations 
automatically from data



“Shallow” learning
Or “feature based” learning

• Before deep learning, a common approach was to use a fixed function for 
extracting features from the input 

• Kind of a compromise solution — don’t hand program the model, but do hand 
program the features 

• Learning on top of the features can be simple 

• Coming up with good features is very hard!
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From shallow learning to deep learning
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Multiple layers of representations

• In deep learning, we process the input through 
multiple layers of learned transformations (functions) 

• Each arrow represents one of these simple learned 
transformations 

• Higher level (closer to the output) representations are 
often more invariant to information that is not relevant 
to predicting the label
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So, what is deep learning?
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• Machine learning with multiple layers of learned representations 

• The function that represents the transformation from input to output 
is a deep neural network 

• The parameters for every layer are usually (but not always) trained 
with respect to the overall objective/loss (e.g., accuracy) 

• This is sometimes referred to as end-to-end learning



What makes deep learning work?

1. Big models with many layers 

2. Large datasets with many examples 

3. Enough compute to handle all of this
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Big models
Is more layers better?
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LeNet, 7 layers (1989)

AlexNet, 8 layers (2012) ResNet-152, 152 layers (2015)



Large datasets
How large are they?

• MNIST (handwritten characters), 1990s: 
60000 images 

• CalTech 101, 2003: 
~9000 images 

• CIFAR-10, 2009: 
~60000 images 

• ILSVRC (ImageNet), 2009: 
1.5 million images
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Enough compute
How much is enough?
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GPUs: great for 
parallel computations

TPUs: optimized for 
matrix operations



So, it’s really expensive?

• One perspective: deep learning is not such a good idea, because it requires 
huge models, huge amounts of data, and huge amounts of compute 

• Another perspective: deep learning is great, because as we scale, i.e., add 
more data, more layers, and more compute, the models get better and better!
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The underlying themes
End-to-end learning and scaling

• Deep learning acquires representations by using high capacity models and lots 
of data, without requiring engineering features or representations 

• We don’t need to know what the good features are, we can have the model figure 
it out from the data 

• This results in better performance, because when representations are learned 
end-to-end, they are better tailored to the current task 

• Scaling is the ability of an algorithm to work better as more data and model 
capacity are added 

• Deep learning methods are really good at scaling
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The underlying themes
Inductive bias vs. learning

• Inductive bias vs. learning can be thought of as “nature vs. nurture”: getting 
performance from designer insight vs. from data, respectively 

• Inductive bias: the knowledge we build into the model to make it learn effectively 

• All such knowledge is “bias” in the sense that it makes some solutions more 
likely and some less likely 

• We can never fully get rid of the need for inductive biases! 

• A common theme in deep learning for many applications: 
deep neural network models overtake the next best model after we figure out the 
right inductive biases for that application
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Deep learning success stories from the past decade
Object detection and segmentation: Mask R-CNN (2017)
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Deep learning success stories from the past decade
Speech recognition
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Deep learning success stories from the past decade
Image generation: BigGAN (2018)
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Deep learning success stories from the past decade
Text generation: GPT-2 (2019)
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Deep learning success stories from the past decade
Mastering the game of Go
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Deep learning success stories from the past decade
Protein folding prediction: AlphaFold (2021)
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